

LAUDO DE ESTABILIDADE ESTRUTURAL

ARQUIVO PÚBLICO DO GOVERNO DO ESTADO DO RIO GRANDE DO SUL

					~	
0	30/07/2021	В	LHFM		SÃO INICIAL	
REV.	DATA	TIPO	POR	DESCRIÇÂ	ÃO DAS REVISÕES	3
			EMIS	SSÕES		
TID	D DE	(A) PRELIMINAR		(D) PARA COTAÇÃO	(G) CONFORME CONST	RUÍDO
		(B) PARA APROVA	ÇÃO	(E) PARA CONSTRUÇÃO	(H) CANCELADO	
EIVIIS	SSÃO	(C) PARA CONHEC	CIMENTO	(F) CONFORME COMPRADO		
			EMPRE:	SA: SIGMA ENGENHA	ARIA E PROJETO	OS LTDA
C	1014	A				
5	IGM	Λ	RT: / CI	REA: 3496414-PB		
5101717				OLUNO DÚDLICO E	00 507400 00	N DIO
			AF	RQUIVO PÚBLICO I		RIO
				GRANDE	DO SUL	
RESPO	NSÁVEL	DATA	LAUDO	DE ESTABILIDADE E	ESTRIITIIDAI	
INLOI O	I	DAIA	LAUDO	DE ESTABILIDADE I	LOTROTORAL	
DES.	VSM	30/07/2021	1			
		00/01/2021	N. PROA			
VER.	LFM	30/07/2021		72200_00036528		Fl. 1/22
APROV.			N. SIGMA	OPÚBLICO-2107-01-	LAUDO	Pov. 0
AFRUV.			ARQUIV	OFUBLICU-2107-01-	LAUDU	Rev. 0
	•	•				

23/11/2021 15:28:33

SOP/GERENCIAMENT/385882001

ANÁLISE

	FOLHA 2/23
DOCUMENTO: LAUDO DE ESTABILIDADE ESTRUTURAL	
Código PROA PROA 172200_00036528	REV 0
Código SIGMA: ARQUIVOPÚBLICO-2107-01-LAUDO	

SUMÁRIO

1 INTRODUÇÃO	
1.1 Casa de Máquina	3
1.2 Caixa de corrida	
1.3 Poço do elevador	
2 ENSAIO DE ESCLEROMETRIA	13
2.1 Descrição e Objetivo do Ensaio	13
2.2 Normas	
2.3 Resultados	
2.4 Certificado de Calibração	17
3 MEMÓRIA DE CÁLCULO	18
3.1 Dimensionamento geométrico	
3.2 Cálculo da área de aço	20
3.3 Verificação da laje de reforço	21
3.3.1 Flecha	
3.3.2 Cisalhamento	2
3.3.3 Fator de segurança	2′
4 CONCLUÇÃO	20

	FOLHA 3/23
DOCUMENTO: LAUDO DE ESTABILIDADE ESTRUTURAL	
Código PROA PROA 172200_00036528	REV 0
Código SIGMA: ARQUIVOPÚBLICO-2107-01-LAUDO	

1 INTRODUÇÃO

O presente laudo técnico tem por finalidade a avaliação da estabilidade estrutural, referente a casa de máquina, caixa de corrida e poço do elevador do Arquivo Público do Estado. Este trabalho técnico é caracterizado pela inspeção predial da edificação, realização de um diagnóstico geral, e ensaio de esclerometria, identificando as anomalias construtivas e falhas de manutenção, com análise de risco oferecido aos usuários, ao meio ambiente e patrimônio.

Foi realizada uma análise estrutural nas vigas da caixa corrida e laje da casa de máquina com elaboração de um modelo representando as cargas atuais presentes na estrutura quanto as futuras previstas (instalação de elevador de seis passageiros).

A edificação objeto deste laudo estrutural está situado na Rua Riachuelo, 1031, Porto Alegre/RS.

A vistoria técnica e os ensaios de esclerometria foram realizados no local nos dias 22, 23 e 24 de Junho de 2021 com registros feitos pelo engenheiro Luciano Henrique de Freitas Mendes, CREA 18668PB.

1.1 Casa de Máquina

A casa de máquina do elevador é o comportamento da edificação destinado à colocação de componentes fundamentais para o funcionamento do elevador. Está localizado na parte superior do edifício, exatamente acima da caixa de corrida do elevador.

Os principais componentes que estão presentes na casa de máquina do elevador são:

- Máquina de tração;
- Limitador de velocidade;
- Quadro de força;
- Quadro de comando;

23/11/2021 15:28:33

SOP/GERENCIAMENT/385882001

ANÁLISE

	FOLHA 4/23
DOCUMENTO: LAUDO DE ESTABILIDADE ESTRUTURAL	
Código PROA PROA 172200_00036528	REV 0
Código SIGMA: ARQUIVOPÚBLICO-2107-01-LAUDO	

Imagem 1 – Acesso à Casa de Máquina

Imagem 2 – Vista interna da Casa de Máquina

>>>

23/11/2021 15:28:33

SOP/GERENCIAMENT/385882001

ANÁLISE

	FOLHA 5/23
DOCUMENTO: LAUDO DE ESTABILIDADE ESTRUTURAL	
Código PROA PROA 172200_00036528	REV 0
Código SIGMA: ARQUIVOPÚBLICO-2107-01-LAUDO	

Imagem 3 – Vista interna da Casa de Máquina

Imagem 4 – Laje de cobertura (Casa de Máquina)

>>>

23/11/2021 15:28:33

SOP/GERENCIAMENT/385882001

ANÁLISE

	FOLHA 6/23
DOCUMENTO: LAUDO DE ESTABILIDADE ESTRUTURAL	
Código PROA PROA 172200_00036528	REV 0
Código SIGMA: ARQUIVOPÚBLICO-2107-01-LAUDO	

Imagem 5 – Laje de cobertura (Casa de Máquina)

Imagem 6 – Viga (Casa de Máquina)

23/11/2021 15:28:33

SOP/GERENCIAMENT/385882001

ANÁLISE

	FOLHA 7/23
DOCUMENTO: LAUDO DE ESTABILIDADE ESTRUTURAL	
Código PROA PROA 172200_00036528	REV 0
Código SIGMA: ARQUIVOPÚBLICO-2107-01-LAUDO	

Imagem 7 - Pilar (Casa de Máquina)

Imagem 8 - Pilar (Casa de Máquina)

Conforme a vistoria e inspeção realizada, os elementos estruturais da Casa de Máquina (vigas, lajes e pilares) atualmente não apresentam estabilidade estrutural necessária para um acréscimo de cargas. Há uma série de manifestações patológicas presentes nestes elementos (armadura exposta, corrosão da armadura, manchas de umidade, destacamento da camada de cobrimento, fissuras) acarretadas pelos vários pontos de infiltração existentes. Esses pontos de infiltração são causados

23/11/2021 15:28:33

SOP/GERENCIAMENT/385882001

ANÁLISE

955

ssinado

	FOLHA 8/23
DOCUMENTO: LAUDO DE ESTABILIDADE ESTRUTURAL	
Código PROA PROA 172200_00036528	REV 0
Código SIGMA: ARQUIVOPÚBLICO-2107-01-LAUDO	

pela ausência de impermeabilização do reservatório superior, localizado logo acima da casa de máquinas, e pela degradação e execução incorreta do sistema de impermeabilização da laje da casa de máquina.

Imagem 9 – Laje da Casa de Máquina (sistema de impermeabilização ineficiente)

Imagem 10 – Laje da Casa de Máquina (sistema de impermeabilização ineficiente)

>>>

23/11/2021 15:28:33

SOP/GERENCIAMENT/385882001

ANÁLISE

	FOLHA 9/23
DOCUMENTO: LAUDO DE ESTABILIDADE ESTRUTURAL	
Código PROA PROA 172200_00036528	REV 0
Código SIGMA: ARQUIVOPÚBLICO-2107-01-LAUDO	

Imagem 11 – Reservatório Superior (Ausência de impermeabilização na laje de cobertura e no interior do reservatório)

1.2 Caixa de corrida

A caixa de corrida do prédio do Arquivo Público é o espaço físico da edificação formada por paredes verticais, vigas intermediárias, fundo do poço e laje de cobertura. É por onde se movimentam a cabina e o contrapeso.

Os elementos estruturais da caixa de corrida do elevador apresentam bom estado de conservação.

23/11/2021 15:28:33

SOP/GERENCIAMENT/385882001

ANÁLISE

	FOLHA 10/23
DOCUMENTO: LAUDO DE ESTABILIDADE ESTRUTURAL	
Código PROA PROA 172200_00036528	REV 0
Código SIGMA: ARQUIVOPÚBLICO-2107-01-LAUDO	

Imagem 12 – Vista interna da caixa de corrida

Imagem 13 – Vista interna da caixa de corrida

>>>

23/11/2021 15:28:33

SOP/GERENCIAMENT/385882001

ANÁLISE

	FOLHA 11/23
DOCUMENTO: LAUDO DE ESTABILIDADE ESTRUTURAL	
Código PROA PROA 172200_00036528	REV 0
Código SIGMA: ARQUIVOPÚBLICO-2107-01-LAUDO	

Imagem 14 – Elementos estruturais da caixa de corrida

Imagem 15 – Alvenaria e vigas intermediárias da caixa de corrida

>>>>

23/11/2021 15:28:33

SOP/GERENCIAMENT/385882001

ANÁLISE

	FOLHA 12/23
DOCUMENTO: LAUDO DE ESTABILIDADE ESTRUTURAL	
Código PROA PROA 172200_00036528	REV 0
Código SIGMA: ARQUIVOPÚBLICO-2107-01-LAUDO	

Imagem 16 - Vigas caixa de corrida

1.3 Poço do elevador

O poço do elevador do prédio do Arquivo Público, está situado na parte inferior da caixa de corrida, abaixo do nível de parada extrema inferior. Neste espaço físico estão instalados diversos equipamentos destinados ao funcionamento e segurança do elevador como (polias, limites, interruptores e para-choques).

Imagem 17 – Poço do elevador

>>>

23/11/2021 15:28:33

SOP/GERENCIAMENT/385882001

ANÁLISE

	FOLHA 13/23
DOCUMENTO: LAUDO DE ESTABILIDADE ESTRUTURAL	
Código PROA PROA 172200_00036528	REV 0
Código SIGMA: ARQUIVOPÚBLICO-2107-01-LAUDO	

Observa-se neste espaço físico a presença de óleo espalhado pelo chão, além de grande quantidade de sujeira, o que evidencia a falta de manutenção neste ambiente.

Os elementos estruturais no poço do elevador apresentam bom estado de conservação.

2 ENSAIO DE ESCLEROMETRIA

2.1 Descrição e Objetivo do Ensaio

Para embasar a elaboração do laudo de estabilidade estrutural, foi realizado o ensaio de esclerometria, cujo objetivo é medir a dureza superficial do concreto, fornecendo elementos para a avaliação do concreto endurecido durante a construção. Este ensaio verifica, de forma não destrutiva, a uniformidade do concreto em diferentes partes de uma estrutura, analisando as características mecânicas por meio de curvas de correlação.

A finalidade é assegurar que o concreto dos elementos estruturais possuem atualmente a mesma resistência no qual fora dimensionado.

Foram selecionadas 09 (nove) áreas de concreto para realização do ensaio, nos seguintes ambientes (Casa de Máquina, Laje de Cobertura e Poço do Elevador), conforme descrição abaixo:

- A1-L1 Laje de piso Casa de Máquina;
- A2-L1 Laje de piso Casa de Máquina;
- P1 -A1 Pilar Casa de Máquina;
- V1- Viga Casa de Máquina;
- P1-A2 Pilar Casa de Máquina;
- L2-A1 Laje de Cobertura;
- L2-A2 Laje de Cobertura;
- V1-A1 Viga Poço do Elevador;
- V2-A1 Viga Poço do Elevador;

23/11/2021 15:28:33

SOP/GERENCIAMENT/385882001

ANÁLISE

	FOLHA 14/23
DOCUMENTO: LAUDO DE ESTABILIDADE ESTRUTURAL	
Código PROA PROA 172200_00036528	REV 0
Código SIGMA: ARQUIVOPÚBLICO-2107-01-LAUDO	

2.2 Normas

O ensaio foi realizado conforme a norma: NBR 7584:2012 – Concreto Endurecido – Avaliação da dureza superficial pelo esclerômetro de reflexão – Método de ensaio.

2.3 Resultados

Os resultados esclerométricos obtidos nas 10 (dez) áreas de concreto estão apresentados na Tabela 01, já com o tratamento de dados, como o descarte dos valores exigidos pela norma NBR 7584:2012. Em seguida, de posse dos valores médios válidos, foi feita a correção com o valor k e determinados os índices esclerométricos finais. Os valores de resistência foram obtidos a partir da curva de correlação Índice esclerométrico x Resistência, do próprio equipamento.

Etapas da obtenção dos valores de resistência, conforme NBR 7584 – 2012:

- Calcular a média aritmética dos n (09 a 16) valores individuais dos índices esclerométricos correspondentes a uma única área de ensaio;
- Desprezar todo índice esclerométrico individual que esteja afastando em mais de 10% do valor médio obtido e calcular média aritmética;
- O índice esclerométrico médio efetivo deve ser obtido com no mínimo 5 valores individuais. Quando isso não for possível, o ensaio esclerométrico dessa área deve ser abandonado;
- Obtenção da Resistência do concreto a partir da curva de correlação do esclerômetro, conforme posição de utilização do equipamento;

	ÍNDICES ESCLEROMÉTRICOS							
L1-A1-CASA DE MÁQUINA	L1-A2-CASA DE MÁQUINA	P1-A1-CASA DE MÁQUINA	V1-A1-CASA DE MÁQUINA	P1-A2-CASA DE MÁQUINA	L2-A1- COBERTURA	L2-A2- COBERTURA	V1-A1-POÇO DO ELEVADOR	V2-A1-VIGA POÇO DO ELEVADOR
36	34	20	55	48	26	22	52	42
37	26	14	55	55	28	27	56	52
40	30	16	54	55	28	28	52	54
32	32	18	44	54	24		52	50
42	33	19	55	54	29	18	50	45
38	38	16	55	52	33	19	52	200 46
40	37	18	54	56	21	29	52	52
36	37	16	44	38	32	26	54	55

23/11/2021 15:28:33

SOP/GERENCIAMENT/385882001

ANÁLISE

40	32		54		28	28		
40		16	54	55	28	28	52	54
37			55	55	28	27	56	52
36	34	1	55	48	26		52	
36	24					VIEDIO +/- 10%	F2	
			ELIMINAÇÃO D	OS VALORES ABAIXO E A	CIMA DO VALOR M	ИÉDIO +/- 10%		
35	32	16			1		48	46
35	32	16	46	48	26	25	48	46
			1			25		l
				INFERIOR 1	10%			
44	33	13	31			1	50	
42	39	19	57	58	31	31	58	56
42	39	19	57	58	31	31	58	56
42	39	19	57			31	58	56
42	20	10	F.7			31		
	-		T			31		l
				SUPERIOR	10%		1	1
				SUPERIOR	10%			
*							•	
38,44	35,81	17,44	52					
38,44	35,81	17,44	52	52,94	28,38	20,07	,,,	30,00
38,44	35,81	17,44	52	52,94	28,38	20,07	33	30,88
38,44	35,81	17,44	52	52,94	28,38	28,07	53	50,88
38,44	35,81	17,44	52	52,94	28,38	28,07	53	50,88
38,44	35,81	17,44	52	52,94	28,38	28,07	53	50,88
38,44	35,81	17,44	52	52,94	28,38	28,07	53	50,88
38,44	35,81	17,44	52	52,94	28,38	20,07	33	30,88
38,44	35,81	17,44	52	52,94	28,38	28,07	53	50,88
38,44	35,81	17,44	52	52,94	28,38	28,07	53	50,88
38,44	35,81	17,44	52	52,94	28,38	28,07	53	50,88
38,44	35,81	17,44	52	52,94	28,38	20,07	1 33	30,88
38,44	35,81	17,44	52				1	l
30,44	33,01	11,44	32				1	
				SUPERIOR	10%			
				SUPERIOR	10%			
	+			SUPERIOR	10%			
	+	1	П	SUPERIOR	10%	21	1	1
	1					31		
12	20	10	57	E0	21	31	50	56
42	39	19	57	58	31	31	58	56
42	39	19	5/	58	31		58	56
	1			INFERIOR 1	10%			
	_			INFERIOR 1	10%			
	+		ı			25		1
25	22	46	46	40	26	25	40	
35	32	16	46	48	26	25	48	46
35	32	16	46	48	26		48	46
			F1 18 417 7	001/41/0050		aforo di sessi		
			ELIMINAÇÃO D	OS VALORES ABAIXO E A	CIMA DO VALOR N	MEDIO +/- 10%		
	-	1	LEININAÇAU D	OS VALUNES ADAIAU E A	CITIA DO VALUR I	11LDIO +/- 10%		1
26	24			40	26		53	
36	34		55	48	26		52	
	3-	+		70	20			-
37			55	55	28	27	56	52
3/	-	1	33	33	28	21	oc.	52
40		16	5.4	ee.	20	20	F 2	E 4
40		16	54	55	28	28	52	54
-	1							
	32	18		54			52	50
	32	18		54	+		52	50
42	22	10		F.4	30		F0	l
42	33	19	55	54	29		50	
38	38	16	55	52	1		52	46
					+			
40	37	18	54	56		29	52	52
40	3/	18	54	56		29	52	52
26	27	16				26	54	
36	37	16				26	54	55
40	36	16	57	54	30	31	48	1
	30	10		J-	30	31	+0	
37	38	16	56		29		54	53
3/	38	10	30		29		54	53
40		10		E7	21		FC	40
40		18		57	31		56	48
40	33	16	52	56	26		56	56
								30
38	39	19	47		29	29		55
38	39	19	4/		29	29	ļ	55
20		10	F3					
38		18	52	51			57	57
	T T							
	32		50	54	28	30	54	54
	32	1	55	J-7	20	30		J-1
36	38	18	51	57	28	28	52	54
30	38	18	51	5/	28	28	52	54
				(ND105 500)				
				ÍNDICE ESCLEROMÉTRICO	O MÉDIO EFETIVO			
						28,50		
38,43	35,58	17,23	53	54,08	28,26	20,50	46,88	52,77
30,73	33,30	11,43	J.J	5+,00	20,20		-0,00	32,77
	1			POSIÇÃO DO ESCL	FRÔMETPO			
	1			POSIÇÃO DO ESCL	ENUIVIETRU		1	,
	1 .		2	2	4	1	2	2
1								
1	1	2	2	2	1		Z	
1	1							
1	1			CIA RETIRADOS DA CURV		O DO ESCLERÔN		- acil

23/11/2021 15:28:33

SOP/GERENCIAMENT/385882001

ANÁLISE

	FOLHA 16/23
DOCUMENTO: LAUDO DE ESTABILIDADE ESTRUTURAL	
Código PROA PROA 172200_00036528	REV 0
Código SIGMA: ARQUIVOPÚBLICO-2107-01-LAUDO	

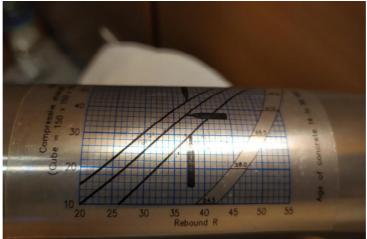


Imagem 18 – Curva de correlação Índice esclerométrico x Resistência

23/11/2021 15:28:33

SOP/GERENCIAMENT/385882001

ANÁLISE

	FOLHA 17/23
DOCUMENTO: LAUDO DE ESTABILIDADE ESTRUTURAL	
Código PROA PROA 172200_00036528	REV 0
Código SIGMA: ARQUIVOPÚBLICO-2107-01-LAUDO	

2.4 Certificado de Calibração

Laudo de Verificação Nº: 034/20

Dados do Cliente

Pag.: 1/1

Contratante:	ASPEC - Engenharia Consultoria Ltda.
Endereço:	Av. Bananeiras, 362, Manaira, João Pessoa - PB
Solicitante:	ASPEC - Engenharia e Consultora Ltda.

2. Item do Cliente:

Equipamento:	Esclerômetro para I	Esclerômetro para Ensaios de Concreto		100	HT-225
Fabricante:	Hammer	Identificação:	339	Serie:	11

3. Condições gerais

Norma de Referencia:	NBR 7584/2012	Data da Verificação:	26/02/2020
Temperatura Ambiente:	22,3°C		

4. Resultados:

Nº Leituras:	Leituras
1°	80,0
2°	0,08
3°	79,0
4°	79,0
5°	0,08
6°	79,0
7°	0,08
8°	0,08
9°	0,08
10°	80,0

Média 79,7

Valor de referência: 80,0 ± 2

5. Nota

 Os resultados deste certificado são válidos exclusivamente para o instrumento calibrado descrito, nas condições especificadas não sendo extensivo a quaisquer outros, mesmo que similares.

Assinado de forma digital por DANILO DOS REIS:33605880886

Signatario Autorizado

Rua Vale da Vida, 122 - JD dos Eucaliptos - Cep 03924-280 - São Paulo - SP

Imagem 19 – Certificado de Calibração Esclerômetro

>>>

23/11/2021 15:28:33

SOP/GERENCIAMENT/385882001

ANÁLISE

	FOLHA 18/23
DOCUMENTO: LAUDO DE ESTABILIDADE ESTRUTURAL	
Código PROA PROA 172200_00036528	REV 0
Código SIGMA: ARQUIVOPÚBLICO-2107-01-LAUDO	

3 MEMÓRIA DE CÁLCULO

3.1 Dimensionamento geométrico

- Laje de reforço

Carga permanente (Laje de reforço):

2 Conjuntos (Motor de tração + carro + pessoas + contrapeso): 4300 kgf/m²

Contrapiso (3 cm): 63 kgf/m2

Carga total permanente: 4363 kgf/m²

Carga acidental: 200 kgf/m²

Foi definido em projeto de reforço de estrutural uma laje retangular (2,00 x 3,35)m e altura de 12 cm, que receberá a carga do conjunto (Motor de tração + carro + pessoas + contrapeso).

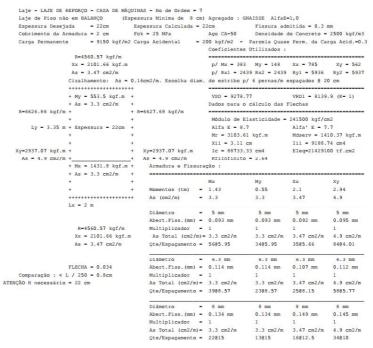


Figura 01 - laje de reforço

23/11/2021 15:28:33

SOP/GERENCIAMENT/385882001

ANÁLISE

	FOLHA 19/23
DOCUMENTO: LAUDO DE ESTABILIDADE ESTRUTURAL	
Código PROA PROA 172200_00036528	REV 0
Código SIGMA: ARQUIVOPÚBLICO-2107-01-LAUDO	

Área de aço na seção comprimida: 3,3 cm²/m Área de aço na seção tracionada: 4,9 cm²/m

- Laje a ser reforçada

Carga permanente (laje a ser reforçada):

Peso próprio da laje de reforço (h = 12cm): 300 kgf/m²

Sobrecarga (Motor de tração + carro + pessoas + contrapeso): 1075 kgf/m²

Contrapiso (3 cm): 63 kgf/m²

Carga total permanente: 1438 kgf/m²

Carga acidental: 200 kgf/m²

Luciano Henrique de Freitas Mendes Programa Lajes - Mudados - Cálculo Elástico http://www.mudados.com.br/ - E-MAIL : renato.mudados@yahoo.com.br

Laje - LAJE DE REFORÇO - CASA DE MÁQUINAS - No de Ordem = 1
Laje de Piso não em BALANÇO (Espesaura Minima de 8 cm) Agregado : GNAISSE AlfaE=1,0
Espesaura Decejoda - 10em Fisaura admitida - 0.3 mm
Cobrimento da Armadura - 2 cm FCk = 25 MPa Aço CA-50 (Densidade do Concreto - 2500 kgf/m3 Carga Permanente = 1638 kgf/m2 Carga Acidental = 200 kgf/m2 - Parcela Quase Perm. da Carga Acid.=0.3 Coeficientes Utilizados : R=1522.54 kgf/m Xx = 1166.27 kgf.m As = 5.17 cm2/m Cizalhamento: Sem Estribos p/ Mx = 362 My = 167 Xx = 755 Xy = 565 p/ Rx1 = 2473 Rx2 = 2473 Ry1 = 5135 Ry2 = 5143 Cizalha + My = 344 kgf.m + + As = 1.5 cm2/m + VSD = 2912.2 VRD1 = 3741.4 (K= 1) Dados para o cálculo das Flechas R=2076.95 kgf/m + + R=2080.14 kgf/m Módulo de Elasticidade = 241500 kgf/cm2 Alfa E = 8.7 Alfa' E = 7.7 Ly = 5.1 m + Espessura = 10cm Mdserv = 690.31 kgf.m Iii = 1260.12 cm4 Eleq=1833657 tf.cm2 Mr = 641.24 kgf.m Xii = 1.85 cm Ic = 8333.33 cm4 KfiInfinito = 2.64 X;1 Xy=1557.66 kgf.m Ic As = 7.2 cm2/m Kfi Armadura e Fissuração : R=1522.54 kgf/m Xx = 1166.27 kgf.m As = 5.17 cm2/m Diâmetro = 8 mm
Abert.Fiss.(mm) = 0.126 mm
Multiplicador = 1
As Total (cm2/m) = 3.19 cm2/m
Qte/Espaçamento = 34015

Figura 02 – laje a ser reforçada

23/11/2021 15:28:33

SOP/GERENCIAMENT/385882001

ANÁLISE

	FOLHA 20/23
DOCUMENTO: LAUDO DE ESTABILIDADE ESTRUTURAL	
Código PROA PROA 172200_00036528	REV 0
Código SIGMA: ARQUIVOPÚBLICO-2107-01-LAUDO	

3.2 Cálculo da área de aço

De acordo com a NBR 6118:2014, as lajes maciças devem respeitar os seguintes limites mínimos para espessura:

- a) 7 cm para lajes de cobertura não em balanço;
- b) 8 cm para lajes de piso não em balanço;
- c) 10 cm para lajes em balanço;
- d) 10 cm para lajes que suportem veículos de peso total menor ou igual a 30 kN;
- e) 12 cm para lajes que suportem veículos de peso total maior que 30 KN;
- f) 15 cm para lajes com protensão apoiadas em vigas, com o mínimo de l/42 para lajes de piso biapoiadas e l/50 para lajes de pisos contínuas;
- g) 16 cm para lajes lisas e 14 cm para lajes cogumelo fora do capitel;

As armaduras devem respeitar os valores mínimos recomendados pela NBR 6118:2014, nas quais

As = ρ min * h, sendo:

As = área de aço;

ρ min = Taxa geométrica mínima de armadura longitudinal (0,15);

h = altura da laje (10 cm);

f _{ck}	20	25	30	35	40	45	50
ω _{min}		V.	V.	ρ _{min} (%)			
0,035	0,150	0,150	0,173	0,201	0,230	0,259	0,288
	es de ρ_{min} $r_{c} = 1.4 e \gamma$		cidos nest	a tabela p	ressupõer	m o uso d	e aço
1	ses fatores de ω _{min} da	1.00	ferentes,	ρ _{min} deve	ser recalc	culado con	n base

Figura 03 – Tabela ρ min. Fonte NBR 6118:2014

>>>

23/11/2021 15:28:33

SOP/GERENCIAMENT/385882001

ANÁLISE

	FOLHA 21/23
DOCUMENTO: LAUDO DE ESTABILIDADE ESTRUTURAL	
Código PROA PROA 172200_00036528	REV 0
Código SIGMA: ARQUIVOPÚBLICO-2107-01-LAUDO	

Os elementos estruturais (vigas, lajes e pilares) são dimensionados de acordo com o Estado Limite de Serviço (ELS). O ELS são os critérios que estão relacionados ao conforto para os usuários, durabilidade da estrutura, aparência e boa utilização de um modo em geral. Os elementos estruturais são dimensionados para suportar a máxima carga a eles transferidos.

3.3 Verificação da laje de reforço

Para verificação da laje de reforço são analisados os parâmetros de flecha e cisalhamento.

3.3.1 Flecha

A flecha correspondente ao maior deslocamento vertical no plano da laje, relativo à aceitabilidade visual dos usuários. Conforme determina a NBR 6118, este deslocamento não deve ultrapassar o limite estabelecido por:

a (lim) = I / 250, sendo; a (lim)= flecha limite

I = menor vão da laje (cm)

a (lim) = 200/250 = 0.80 cm flecha calculada = 0.058 cm

3.3.2 Cisalhamento

Verifica-se que não há a necessidade de armadura transversal (estribos), comparando-se o maior valor da força cortante (VSD), com o esforço resistente (VRD1).

VSD = 3404,1 Kgf/m VRD1 = 4278,7 Kgf/m.

VRD1 > VSD

3.3.3 Fator de segurança

Conforme NBR 8800 , Anexo B.4.2 Elevadores, na ausência de especificação mais rigorosa, todas as ações de elevadores devem ser majoradas em 100%. Os elementos que suportam elevadores devem ser dimensionados dentro dos limites de deslocamentos máximos permitidos pelos fabricantes dos mesmos.

23/11/2021 15:28:33

SOP/GERENCIAMENT/385882001

ANÁLISE

	FOLHA 22/23
DOCUMENTO: LAUDO DE ESTABILIDADE ESTRUTURAL	
Código PROA PROA 172200_00036528	REV 0
Código SIGMA: ARQUIVOPÚBLICO-2107-01-LAUDO	

Momento Solicitante (Mdserv) = 1.410,37 kgf.m Momento resistente (Mr) = 3.103,61 Kgf.m Fator de segurança (Fs) = Mr / Mdserv

Fs = 2.2

4 CONCLUSÃO

Conforme relatório técnico e memória de cálculo apresentados, recomenda-se a implementação do reforço estrutural na laje da Casa de Máquinas para modernização de equipamentos de transporte vertical e instalação de elevador de seis passageiros no Prédio do Arquivo Público do Governo do Estado do Rio Grande do Sul. A recomendação é de aumento da seção transversal da laje existente através da execução de uma nova laje de reforço de dimensões de $(2,00 \times 3,35)$ m e altura h= 12 cm.

O reforço estrutural tem por finalidade transmitir a sobrecarga de forma distribuída à laje inferior, fazendo com que a mesma não apresente deformações excessivas, manifestações patológicas ou entre em colapso.

A sobrecarga concentrada, proveniente do conjunto (Motor de tração + carro + pessoas + contrapeso), será absorvida pela laje de reforço, área de influência da carga adicional, e posteriormente transferi-la de forma distribuída à laje inferior.

É imprescindível que para a modernização de equipamentos de transporte vertical da edificação, sejam recuperados os elementos estruturais da Casa de Máquinas (Pilares, Vigas e Lajes). Conforme apontado pelo Laudo de Inspeção Predial fornecido, há uma série de manifestações patológicas provenientes por falhas e inexistência do sistema de impermeabilização do Reservatório Superior e da Laje de cobertura da Casa de Máquinas, que deverão ser sanados para posteriormente execução da laje de Reforço.

23/11/2021 15:28:33

SOP/GERENCIAMENT/385882001

ANÁLISE

	FOLHA 23/23
DOCUMENTO: LAUDO DE ESTABILIDADE ESTRUTURAL	
Código PROA PROA 172200_00036528	REV 0
Código SIGMA: ARQUIVOPÚBLICO-2107-01-LAUDO	

Belo Horizonte, 19 de Outubro de 2021

Responsabilidade técnica do laudo:

SIGMA ENGENHARIA E PROJETOS LTDA.

CREA-PB: 3496414

LUCIANO HENRIQUE Assinado de forma digital por LUCIANO HENRIQUE DE FREITAS

MENDES:015459616

MENDES:01545961670
Dados: 2021.11.18 17:23:50

LUCIANO HENRIQUE DE FREITAS MENDES / CREA: 18668-PB ENGENHEIRO CIVIL - ELETRICISTA

23/11/2021 15:28:33

SOP/GERENCIAMENT/385882001

ANÁLISE