

MEMORIAL DESCRITIVO PROJETO SPDA

1 – APRESENTAÇÃO

O presente memorial descritivo tem por finalidade a orientação genérica para a execução da obra do Projeto de SPDA da Sede do 31º Batalhão de Polícia Militar, localizado na Estrada Ismael Chaves Barcelos, S/N, Bairro Santa Rita, Guaíba/RS.

O perfeito funcionamento das instalações ficará sob responsabilidade da empresa licitada, estando a critério da Fiscalização, impugnar quaisquer serviços e/ou materiais que não estiverem em conformidade com esta especificação e/ou projeto.

2 – DISPOSIÇÕES GERAIS

Devem ser atendidas as seguintes recomendações gerais:

- O Projeto Elétrico de SPDA deverá ser executado por profissional legalmente habilitado, registro no CREA e comprovado por Anotação de Responsabilidade Técnica ART.
- ➤ A Anotação de Responsabilidade Técnica (ART) será emitida pela empresa e com respaldo do Responsável Técnico.
- ➤ A ART deverá ser devidamente preenchida, c/ data, assinada pelo profissional responsável e legalmente habilitado nesta especialização pelo Conselho de Engenharia, quitada e acompanhada da autenticação de pagamento. Uma cópia digitalizada da ART deve ser incluída no CD de documentação.
- Informações a respeito da execução do Projeto deverão ser entregues digitalizadas em CD-R ou CD-RW, bem como suas respectivas cópias em papel sulfite de 90g/m².
- Os desenhos devem ser entregues em extensão .dwg e demais Texto, Planilhas, ART pertencentes ao Projeto Elétrico de SPDA em extensão .doc, .xls ou extensão pertinente ao aplicativo.
- > Todos os Documentos deverão ser entregues em duas vias: cópia digital e cópia papel.
- As Plantas e Diagramas (AS BUILT) deverão ser entregues conforme formato descrito em Apresentação de Documentação Técnica.
- ➤ Toda a linha de materiais deve possuir certificação em território nacional e liberação do Inmetro atendendo as especificações de qualidade e segurança. Esta medida deve garantir segurança na instalação elétrica, continuidade de atendimento, disponibilizando qualidade física, do patrimônio e da operacionalidade.
- ➤ Todos os materiais, dispositivos e equipamentos listados no Memorial Descritivo, devem ter garantia de disponibilidade em mercado local, para sua futura substituição em caso de falha operacional ou em manutenção corretiva.
- Para execução deste projeto, deverão sempre ser observadas as orientações contidas na NBR 5410/2004, NBR 5419:2015, RIC/CEEE ou empresa concessionária local e normas da concessionária de telefonia e/ou Rede corporativa.
- Salienta-se que deve ser um imperativo seguir os critérios determinados pela NR-10 ("Segurança em Instalações e Serviços em Eletricidade") e NR-33 ("Segurança e Saúde no Trabalho em Espaços Confinados") do Ministério do Trabalho e Emprego MTE, conforme citada por estas, em todas as etapas, do Projeto até as obras de execução do Projeto Elétrico de SPDA.

3 - ATERRAMENTO

Todos os aterramentos serão realizados através de hastes cobreadas, tipo Coperweld com medidas de 16mmx2400mm e conector, enterradas verticalmente no solo. A resistência de aterramento não poderá ser superior a 10 Ohms em qualquer época do ano.

3.1 - Ligação Equipotencial

Todos os sistemas de aterramento deverão ser interligados ao barramento de equipotencialização, por condutor de cobre, com bitola de no mínimo igual ao condutor fase dos circuitos, protegido por eletroduto de no mínimo 32mm (1") em aço galvanizado.

4 – SISTEMA DE PROTEÇÃO CONTRA DESCARGAS ATMOSFÉRICAS – SPDA

Para a definição do modelo de proteção a ser adotado para a implantação do SPDA tomou-se como base o levantamento de parâmetros, características do local das instalações e avaliação dos materiais utilizados. Na avaliação de risco identificou-se o nível de proteção, o método de proteção mais adequado, posicionamento, dimensão da malha de aterramento, sua abrangência e as massas metálicas e outras malhas existentes integradas ao SPDA. Dessa forma optou-se pelo Método Gaiola de Faraday combinado com Eletrogeométrico.

O SPDA a ser instalado deverá obedecer rigorosamente à norma NBR 5419:2015, ao projeto e detalhes de instalação apresentados em planta.

4.1 - Esclarecimentos

O SPDA é um sistema de proteção contra descargas atmosféricas que tem como objetivo escoar para o solo, no caminho mais curto e mais rápido possível os raios que eventualmente atingiriam a edificação onde está instalado, reduzindo os riscos de vida e de danos materiais. É constituído pelos sistemas de captação, descidas, anéis de cintamento, aterramento e equipotencialização. Um SPDA projetado conforme a Norma Brasileira não assegura a proteção absoluta da estrutura, de pessoas e bens, mas reduz significativamente os riscos de danos.

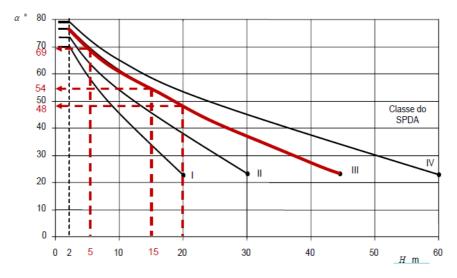
Não poderá haver tubulações metálicas ou fios/cabos externos próximos aos cabos de descida do SPDA, paralelamente ou perpendiculares.

Deverão ser efetuadas inspeções visuais anualmente e inspeções completas a cada três anos.

4.2 - Seleção das Medidas de Proteção

A seleção das medidas de proteção adequadas deve ser feita pelo projetista de acordo com a participação de cada componente de risco no risco total e de acordo com aspectos técnicos e econômicos das diferentes medidas de proteção.

Assim, utilizando-se um conjunto de critérios encontrou-se no Nível 2 a proteção mais adequada para a Sede do 31º Batalhão de Polícia Militar.



4.3 - Método de Proteção

Baseado nas informações se utilizará na elaboração do projeto do SPDA o Método Gaiola de Faraday, de acordo com a da Tabela abaixo, assim delimitando o volume de proteção pelos captores de um SPDA. O modelo adotado é um critério especialmente útil para estes tipos de estruturas e formas arquitetônicas, levando-se em consideração o mecanismo de formação das descargas atmosféricas.

Classe de SPDA	Raio da esfera rolante r (m)	Máximo afastamento dos condutores da malha (m)	Ângulo de proteção α°
1	20	5 x 5	Curvas, Fig. 1
II	30	10 x 10	
III	45	15 x 15	
IV	60	20 x 20	

Fonte: Tabela 2 –NBR 5419-3:2015 – Valores máximos dos raios da esfera rolante, tamanho da malha e ângulo de proteção correspondentes a classe de SPDA.

Fonte: Figura 1 – NBR 5419-3:2015 – ângulo de proteção correspondentes a altura e a classe de SPDA.

4.4 - Subsistema de Captação

O subsistema de captação pelo Método Gaiola de Faraday, para o Nível de Proteção II, estabelece a malha máxima de 10m x 10m. O subsistema de captação deve ter o conjunto de condutores construído de tal modo que a corrente elétrica da descarga atmosférica sempre encontre pelo menos duas rotas condutoras distintas para o subsistema de aterramento. Os condutores da malha devem seguir o caminho mais curto e retilíneo possível da instalação.

4.5 - Subsistema de Descidas

Para determinar o número de descidas do SPDA externo serão utilizados os dados da tabela abaixo, assim considerando o nível II de proteção, o espaçamento médio das descidas será de 10 metros. A norma determina que as descidas devam ser localizadas preferencialmente nas quinas principais da edificação, e as demais, distribuídas ao longo do perímetro com espaçamentos regulares de acordo com o nível de proteção.

Classe de SPDA	Distâncias (m)
	10
II	10
III	15
IV	20

Nota: É aceitável que o espaçamento dos condutores de descidas tenha no máximo 20% além dos valores acima.

Fonte: Tabela 4 – NBR 5419-3:2015 – Valores típicos de distância entre os condutores de descida e entre os anéis condutores de acordo com a classe de SPDA.

Os cabos de descidas em cobre nú #35mm² devem ser protegidos contra danos mecânicos até, no mínimo, 2,5 metros acima do nível do solo. A proteção deve ser por eletroduto de PVC Ø1 1/2". Cada condutor de descida deve ser provido de uma caixa de inspeção, conforme descrito em projeto. A conexão deve ser desmontável por meio de ferramenta, para efeito de medições elétricas, mas deve permanecer normalmente fechada.

As decidas serão interligadas ao subsistema de aterramento a uma distância mínima de 1 metro das fundações da estrutura. Todas as emendas da malha de aterramento serão realizadas através de solda exotérmica.

As descidas serão conectadas ao anel inferior, e estas interligadas entre si por cabo de cobre nú com seção mínima de 50 mm², formando o anel inferior do sistema de aterramento do SPDA.

4.6 - Subsistema de Aterramento

Os cabos de descida interligam-se ao anel inferior, por meio de solda exotérmica, e estes se interligam entre si formando o anel inferior do sistema de aterramento. O anel inferior circunda a edificação por meio de cabos de cobre nú #50mm². As emendas deste anel serão também através de solda exotérmica.

4.7 - Fixações e Conexões

Os condutores e conectores deverão ser firmemente fixados, de modo a impedir que esforços eletrodinâmicos, ou esforços mecânicos acidentais (como a vibração) possam causar sua ruptura ou desconexão.

O número de conexões nos condutores do SPDA deverá ser reduzido ao mínimo. As conexões do subsistema de aterramento devem ser asseguradas por meio de soldagem exotérmica. As conexões soldadas devem ser compatíveis com os esforços térmicos e mecânicos causados pela corrente de descarga atmosférica.

No local de conexão dos terminais, realizados com parafusos, deverá ser aplicada tinta epóxi (tinta típica de fundo) para evitar corrosão entre diferentes metais.

22/09/2022 17:03:12

5 - EXECUÇÃO DO PROJETO ELÉTRICO DE SPDA - OBRA

A obra terá como elemento orientativo o Projeto Elétrico de SPDA Básico.

A obra deverá atender todas as diretrizes deste Projeto Básico, Memorial Descritivo e todas as regulamentações oficiais e orientações das NBR e RIC BT/MT – CEEE e demais concessionária de energia elétrica.

Como elemento final de equalização e para dirimir dúvida e/ou conflito haverá acompanhamento de fiscais e representantes locais para atender o solicitante.

6 - NORMAS REGULAMENTADORES E TÉCNICAS

As principais normas Técnicas e Regulamentadoras estão sendo indicadas a seguir como forma orientativa, não excluindo a necessidade de considerar demais normas complementares não citadas.

- ➤ Lei de Licitações e Contratos Públicos Lei 8.666/1983.
- ➤ Regulamento para Instalação Consumidora em Baixa Tensão RIC Concessionária local.
- Regulamento para Instalação Consumidora em Média Tensão RIC Concessionária local.
- Resolução 456 "Condições Gerais de Fornecimento de Energia Elétrica" ANEEL.
- ➤ NBR-5410 "Segurança em Instalações e Serviços em Eletricidade" ABNT.
- NBR-5419:2015 "Proteção de estruturas contra descargas atmosféricas" SPDA ABNT.
- ➤ NBR-14039 "Instalações Elétricas de Média Tensão de 1kV a 36kV"- ABNT.
- ➤ NBR-5444 "Símbolos Gráficos para Instalações Elétricas" ABNT.
- ➤ NBR-5413 "Procedimento para Iluminação de Interiores" ABNT.
- NBR-6323 Produto de aço ou ferro galvanizado a fogo ABNT;
- ➤ NBR-13571:1996 Haste de aterramento em aço cobreado e acessórios ABNT;
- ➤ NBR-14039 "Instalações Elétricas de Média Tensão de 1kV a 36kV" ABNT;
- NBR-14565—"Procedimento básico para elaboração de Projetos de Cabeamento de Telecomunicações para rede interna estruturada" – ABNT.
- ➤ IEEE-1159 "Recomendações para Qualidade de Energia" IEEE.
- ➤ IEEE-0519 "Recomendações para Fator de Potência dos Harmônicos" IEEE.
- ➤ NR-04 "Serviço especializado em Eng. de Segurança e em Medicina do Trabalho" MTE.
- NR-06 "Equipamentos de Proteção Individual EPI" MTE.
- ➤ NR-07 "Programa de Controle Médico de Saúde Ocupacional" MTE.
- ➤ NR-09 "Programa de Prevenção de Riscos Ambientais PPRA" MTE.
- ➤ NR-10 "Segurança em Instalações e Serviços em Eletricidade" MTE.
- ➤ NR-16 "Atividades e Operações Perigosas" MTE.
- ➤ NR-26 "Sinalização de Segurança" MTE.
- ➤ NR-33 "Segurança e Saúde nos Trabalhos em Espaços Confinados" MTE.
- RIC "Regulamento das Instalações Consumidoras Baixa Tensão" Concessionária Local;
- > RIC "Regulamento das Instalações Consumidoras Média Tensão Concessionária Local;
- Resolução 456 "Condições Gerais de Fornecimento de Energia Elétrica" ANEEL;
- Demais normas pertinentes.

7 - GENERALIDADES DO PROJETO/EXECUÇÃO

- ➤ A execução da obra conforme projeto elétrico de SPDA e o perfeito funcionamento das instalações dentro das condições desejadas, parâmetros especificados, critérios de segurança, operação dos dispositivos e equipamentos, atendimento de qualidade do material especificado, qualidade na montagem e instalação estará sob inteira responsabilidade da Empresa executante e Fiscalização da Obra, cabendo à fiscalização, orientar/ou impugnar quaisquer serviços de montagem das redes e ou materiais empregados que não estiverem em conformidade com a especificação e/ou projeto.
- Estará sob o critério da Fiscalização, modificar e/ou substituir qualquer item do projeto que se fizer necessário, tornando-se de sua responsabilidade e sem qualquer conseqüência ou ônus sobre os autores originais do projeto.
- Os Materiais e Equipamentos a serem instalados na presente obra, deverão ser apresentados previamente a Fiscalização; e/ou apresentados catálogos dos materiais ofertados, evitando desta forma a instalação de materiais e/ou produtos em desconformidade com o especificado.
- No final da execução da obra, deverá ser anexada a documentação As Built a este processo, para que sejam consideradas todas as especificações conforme projeto e/ou modificações efetuadas.
- Para execução deste projeto, deverão sempre ser observadas as orientações contidas na NBR 5410/2004, NBR 5419:2015, RIC/CEEE ou empresa concessionária local e normas da concessionária de telefonia e/ou Rede corporativa.
- ➤ Salienta-se que deve ser um imperativo seguir os critérios determinados pela NR-10 ("Segurança em Instalações e Serviços em Eletricidade"), NR-33 ("Segurança e Saúde no Trabalho em Espaços Confinados") do Ministério do Trabalho e Emprego MTE e legislação vigente para trabalhos em altura durante a execução da Obra, sendo estes já considerados inicialmente no Projeto Elétrico de SPDA.
- > Toda a linha de materiais deve possuir certificação em território nacional e liberação do Inmetro atendendo as especificações de qualidade e segurança. Esta medida deve garantir segurança na instalação elétrica, continuidade de atendimento, disponibilizando qualidade física, do patrimônio e da operacionalidade.
- Todos os materiais, dispositivos e equipamentos listados neste memorial descritivo, devem ter garantia de disponibilidade em mercado local, para sua futura substituição em caso de falha operacional ou manutenção corretiva
- Todos os serviços deverão ser executados com esmero e capricho, a fim de manter um bom nível de acabamento e garantir confiabilidade e segurança das instalações elétricas.
- ➤ O Projeto Elétrico de SPDA Básico contém elementos orientativos para execução da obra prevista, complementando-se com este Memorial Descritivo.

Todas as considerações acima foram baseadas em questões técnicas e regidas pelas normas vigentes.

8 – OBSERVAÇÕES

É imprescindível por parte do executante da Obra, uma visita ao local e a verificação "in loco" das condições e medidas físicas, condições do trajeto e avaliação Global dos trabalhos.

Porto Alegre, 23 de setembro de 2021.

Eng. Eletricista Vanderlei Petry ID 3680991-1 / CREA/RS 88.887 Secretaria de Obras e Habitação

Nome do documento: 19-1203-0021837-5_SPDA_MD_31_BPM_GUAIBA_R000.pdf

Documento assinado por Órgão/Grupo/Matrícula Data

Vanderlei Adriano Petry SSP / FORCA-TAF / 36809911 22/09/2022 17:00:30

PROJETO ELÉTRICO

SUBESTAÇÃO DE ENERGIA ELÉRICA

31º BATALHÃO DE POLÍCIA MILITAR
BRIGADA MILITAR
SECRETARIA DA SEGURANÇA PÚBLICA - SSP
ESTRADA ISMAEL CHAVES BARCELOS, S/N - BAIRRO SANTA RITA
GUAÍBA / RS

1.	APRESENTAÇÃO	3
	OBJETIVO	
3.	DISPOSIÇÕES GERAIS DE PROJETOS	3
4.	APRESENTAÇÃO DE DOCUMENTAÇÃO TÉCNICA	
5.	SUBESTAÇÃO DE ENERGIA ELÉTRICA	5
5.1.	DESCRITIVO DO SISTEMA ELÉTRICO	5
5.2.	CARACTERÍSTICAS DO SISTEMA	5
5.3.	ESPECIFICAÇÕES ELÉTRICAS	
6.	ENTRADA DE SERVIÇO/SUBESTAÇÃO DE ENERGIA ELÉTRICA	6
6.1.	RAMAL EM MÉDIA TENSÃO (MT)	6
6.2.	PROTEÇÃO DE MÉDIA TENSÃO (MT).	
6.3.	PROTEÇÃO CONTRA DESCARGAS ATMOSFÉRICAS	7
6.4.	SUBESTAÇÃO TRANSFORMADORA ABRIGADA	7
6.4.1		
6.4.2	BARRAMENTOS	8
6.4.3		
6.4.4	,	
6.5.	ATERRAMENTO	
7.	REDES DE ALIMENTAÇÃO DE ENERGIA ELÉTRICA	
7.1.	CONCESSIONÁRIA	
7.2.	GERADOR ENERGIA ELÉTRICA	
7.2.1		
7.2.2		
7.2.3		
8.	ALIMENTADORES	
9.	QUADRO GERAL DE BAIXA TENSÃO (QGBT)	
9.1.	PROTEÇÃO ELÉTRICA GERAL	
10.	PROTEÇÕES ELÉTRICAS	
10.1	•	
10.2		
11.	GENERALIDADES DO PROJETO/EXECUÇÃO	
12.	NORMAS TÉCNICAS E REGULAMENTADORES	Docume16
		>>> PRO
		\

1. APRESENTAÇÃO

O presente Projeto Básico da Entrada de Serviço (Subestação) tem por finalidade ser uma orientação com vistas à execução da obra denominada Sede do 31º Batalhão de Polícia Militar da Secretaria da Segurança Pública.

O Memorial Descritivo tem como elementos de complementação na compreensão do Projeto Elétrico, o esboço em Planta Baixa e os Diagramas Elétricos. Entretanto, a sua concepção e as suas informações prevalecem em relação aos demais em todos os aspectos, principalmente em divergências, interpretações ou qualquer outro aspecto. Portanto, a informação contida no Memorial Descritivo deverá ser tratada como definição principal e final.

2. OBJETIVO

O Projeto Básico da Subestação ora apresentado tem o objetivo de servir como base para elaboração do Projeto a ser apresentado para aprovação pela concessionária de energia elétrica. Considera-se a partir do Ponto de Derivação da Rede Primária da empresa concessionária distribuidora de Energia Elétrica, continuando com Proteção, Transformação, Medição e Geração de Energia Elétrica Suplementar e todos seus elementos constituintes.

3. DISPOSIÇÕES GERAIS DE PROJETOS

Devem ser atendidas as seguintes recomendações gerais:

- O Projeto Elétrico deverá ser executado por profissional legalmente habilitado, registro no CREA e comprovado por Anotação de Responsabilidade Técnica - ART.
- ➤ A Anotação de Responsabilidade Técnica (ART) será emitida pela empresa e com respaldo do Responsável Técnico.
- ➤ A ART deve ser preenchida c/ data e assinada por profissional responsável, legalmente habilitado nesta especialização pelo Conselho de Engenharia, quitada e acompanhada da autenticação de pagamento. Uma cópia digitalizada da ART deve ser incluída no CD de documentação.
- ➤ Informações a respeito da execução do Projeto deverão ser entregues digitalizadas em CD-R ou CD-RW, bem como suas respectivas cópias em papel sulfite de 90g.
- ➤ Os desenhos devem ser entregues em extensão .dwg e demais Texto, Planilhas, ART pertencentes ao Projeto Elétrico em extensão .doc, .xls ou extensão pertinente ao aplicativo.
- > Todos os Documentos deverão ser entregues em duas vias: cópia digital e cópia papel.
- ➤ As Plantas e Diagramas (*AS BUILT*) deverão ser entregues conforme formato descrito em Apresentação de Documentação Técnica.
- ➤ Toda a linha de materiais deve possuir certificação em território nacional e liberação do Inmetro atendendo as especificações de qualidade e segurança. Esta medida deve garantir segurança na instalação elétrica, continuidade de atendimento, disponibilizando qualidade física, do patrimônio e da operacionalidade.
- ➤ Todos os materiais, dispositivos e equipamentos listados no Memorial Descritivo, devem ter garantia de disponibilidade em mercado local, para sua futura substituição em caso de falha operacional ou em manutenção corretiva.

- Para execução deste projeto, deverão sempre ser observadas as orientações contidas na NBR 5410/2004, NBR 5419/2015, RIC/CEEE ou empresa concessionária local e normas da concessionária de telefonia e/ou Rede corporativa.
- ➤ Salienta-se que deve ser um imperativo seguir os critérios determinados pela NR-10 ("Segurança em Instalações e Serviços em Eletricidade") e NR-33 ("Segurança e Saúde no Trabalho em Espaços Confinados") do Ministério do Trabalho e Emprego MTE, conforme citada por estas, em todas as etapas, do Projeto até as obras de execução do Projeto Elétrico.

4. APRESENTAÇÃO DE DOCUMENTAÇÃO TÉCNICA

Os elementos técnicos para a apresentação do projeto elétrico final (AS BUILT) são os seguintes:

- ➤ Planta de situação na escala 1:1000, onde devem ser indicados os nomes das ruas formadoras do quarteirão onde se encontra o terreno, dimensões deste terreno, número do imóvel e norte magnético.
- ➤ Planta de localização, na escala 1:100 ou 1:50, indicando as dimensões e o posicionamento dos prédios dentro do terreno.
- ➤ Planta de implantação, na escala 1:100 ou 1:50, mostrando a ligação da entrada de energia, QGBT, circuitos alimentadores até o Centro de Distribuição.
- > Detalhes da entrada de medição, 1:25 ou de acordo c/ normas da Concessionária de Energia Elétrica.
- ➤ Utilizar simbologia, conforme a NBR 5444.
- > Diagrama Unifilar ou Bifilar/Trifilar, indicando a lógica operacional das Instalações Elétricas.
- Quadro de Cargas contendo todas as cargas e seus elementos pertinentes.
- ➤ Planta baixa com a distribuição das cargas nas escalas 1:50, 1:75 ou 1:100.
- > Cortes que se fizerem necessários e detalhes, na escala 1:50.
- O Memorial Descritivo deverá basicamente ser composto por: Descritivo físico e construtivo das Instalações Elétricas e sua infraestrutura, dos Equipamentos e dos materiais empregados; Descritivo operacional; Memorial de Cálculo do dimensionamento e das proteções elétricas
- Memorial Descritivo deverá englobar: Entrada de Energia, Quadro Geral de Baixa Tensão (QGBT) e demais elementos necessários. No Memorial deve ser descrito integralmente as características elétricas e físicas dos dispositivos, operacionalidade e recomendações.
- ➤ Na Documentação de entrega devem constar manuais dos equipamentos e dispositivos, ensaios dos equipamentos e dispositivos (Solicitação do Projeto com vistas à execução).
- ➤ Na execução do Projeto (Obra) devem ser previstos testes operacionais e termo de entrega das Instalações Elétricas (Solicitação do Projeto com vistas à execução).

5. SUBESTAÇÃO DE ENERGIA ELÉTRICA

5.1. DESCRITIVO DO SISTEMA ELÉTRICO

Está sendo apresentado o Memorial Descritivo com vistas à execução do Projeto Elétrico e a Entrada de Serviço/Subestação de Energia Elétrica. Este contém as orientações construtivas e descrição dos equipamentos a serem apresentados na proposta.

5.2. CARACTERÍSTICAS DO SISTEMA

O Sistema Elétrico disponibilizado localmente pela concessionária de Energia Elétrica apresenta as seguintes características:

- Distribuição Primária na tensão de 23,1kV.
- ➤ O Padrão na Localidade é a Tensão Trifásica (3Ø) 380V e (1Ø) 220V em 60Hz.

5.3. ESPECIFICAÇÕES ELÉTRICAS

Apresenta-se o Projeto Elétrico com concepções, especificações e dimensionamento de acordo com as Normas Técnicas Brasileiras.

Considerando todas as solicitações e especificações, a carga demandada resultou em 200kVA. Este dado define uma Subestação de 225kVA em cabine abrigada com medição em Baixa Tensão.

Para a definição dos parâmetros principais e consequente dimensionamento dos circuitos alimentadores e respectivas proteções, seguem as determinações dos valores para sua composição.

Cálculos da Corrente Nominal, In.

$$In = \frac{225.000}{380 \times 1.732} = 342A$$

Cálculos da Corrente Presumida de Curto Circuito, Ikk.

Considerando a impedância do Transformadora como sendo Z=5%.

$$Ikk = \frac{In \times 100}{Z} = \frac{342 \times 100}{5} = 6,84kA$$

$$Ikk = 6,84kA$$

Consideraremos a Capacidade de Interrupção de ≅ 35kA.

A Subestação instalada de 225kVA, tensão trifásica no secundário de 380V, a sua máxima Corrente nominal é de aprox. 350A. O cálculo da corrente Ikk é ilustrativo e deve ser reconsiderado no projeto a ser desenvolvido pela PROPONENTE para aprovação na concessionária.

6. ENTRADA DE SERVIÇO/SUBESTAÇÃO DE ENERGIA ELÉTRICA

O Projeto Elétrico da Entrada de Serviço possui características as quais serão apresentadas a seguir.

6.1. RAMAL EM MÉDIA TENSÃO (MT).

No Ponto de Derivação empregar-se-á um poste de concreto em substituição a um poste de madeira em frente ao acesso de veículos na Rua Um. Neste poste deverá ser instalada uma estrutura de derivação C2 com direção de eixo perpendicular a direção do Ramal de Ligação. Instalação de chaves fusíveis e Para-Raios Poliméricos e sistema de aterramento.

O Ramal de Entrada a partir do Poste será subterrâneo na tensão 23,1kV, para tanto deverão ser instalados 04 (três) cabos condutores do tipo EPR, tensão de isolamento15/25kV, seção 35mm², sendo um dos cabos previsto como reserva técnica. Além dos cabos para MT, deve ser estendido no duto um cabo de cobre isolado, com isolação classe 750V na cor verde, de seção mínima 35mm²

As extremidades dos cabos devem ser protegidas com terminações contráteis para esta classe de tensão, não sendo permitidas emendas nos condutores do ramal de entrada. Os cabos de MT devem estar devidamente identificados, conforme NBR 14039, nas extremidades e nas caixas de inspeção. A blindagem metálica dos cabos deve ser ligada individualmente ao sistema de aterramento somente em um de seus extremos.

Os cabos de MT devem ser protegidos nas instalações junto ao poste, o eletroduto deve ser rígido de aço-carbono galvanizado a fogo, classe "média", "pesada" ou "extra" com diâmetro mínimo de 100 mm e espessura mínima da parede de 4,25 mm, conforme NBR 5597 e 5598 e deve ter uma altura de 6,00 metros do solo e ser preso ao poste com cintas ajustáveis ou arame zincado 12BWG, bandagens de 5 voltas espaçadas de 2 metros. O eletroduto junto ao poste deve ser identificado com o número do prédio a ser ligado, mediante a utilização de material não corrosivo, fixado na extremidade superior do mesmo. Esse eletroduto deve ser vedados nas extremidades com massa calafetadora para evitar a entrada de água, insetos, etc;

Os cabos devem ter identificação das fases, tanto no poste quanto no interior da cabine, a fim de facilitar os serviços no caso de eventual manutenção, por cores distintas, conforme abaixo:

Fase "V" - cor vermelha (antiga fase A) (MUNSELL 5R-4/14)

Fase "A" - cor azul escuro (azul royal) (antiga fase B) (MUNSELL 2,5PB-4/10)

Fase "B" - cor branca (antiga fase C) (MUNSELL N9,5)

Os cabos devem ser identificados através de sua própria cobertura ou fita;

Caixas de Passagem com dimensões mínimas de 800mm x 800mm x1000mm livres, com fundo falso de pedra britada nº 2 e que permitam raios de curvatura dos cabos de no mínimo 12 vezes o seu diâmetro externo ou conforme especificação do fabricante, com tampa de concreto armado, devendo ser instaladas nos seguintes pontos:

- a 500mm da face do poste de transição da rede aérea para a subterrânea;
- nos pontos em que houver ângulos nos dutos iguais ou superiores a 30 graus;
- no máximo a cada 50 metros de duto.

A profundidade mínima da parte superior do eletroduto em relação ao nível do solo é de 0,60 m. Os eletrodutos devem ter declividade adequada de no mínimo 1%, para facilitar o escoamento das águas de infiltração.

Todo ramal de entrada subterrâneo deve ser identificado com o número do prédio a que pertence, sendo que a numeração deve ser feita, através de placa fixada na cruzeta que sustenta as muflas e na face voltada para o lado em que é operada a chave corta-circuito ou faca. Essa identificação deve ser feita pelo interessado e sua fixação deve ser feita com arame zincado 12BWG.

6.2. PROTEÇÃO DE MÉDIA TENSÃO (MT).

A instalação de chaves fusíveis junto ao Poste do Ponto de Derivação deve ser feita de forma que seu fechamento não ocorra pela ação da gravidade e quando abertas, as partes móveis não fiquem energizadas.

> Tensão nominal: 23,1kV

Corrente nominal da base: C300A;

> Porta fusível: 100A / 4,5kA;

Elos na derivação: 6K. > Corrente nominal: 5,65A

6.3. PROTEÇÃO CONTRA DESCARGAS ATMOSFÉRICAS

Os para-raios devem ser em corpo polimérico, com resistores não-lineares de óxido de zinco (ZnO), com desligador automático, corrente de descarga nominal de10kA e tensão nominal 25kV em conformidade com o padrão de materiais da concessionária, a ser instalado nas cruzetas de madeira no poste Ponto de Entrega junto à entrada subterrânea.

Os cabos e o transformador serão protegidos contra descargas atmosféricas por meio de 03 páraraios, com características acima citadas, com sistema de neutro aterrado, instalados no poste do Ponto de Entrega do ramal de entrada da Subestação.

6.4. SUBESTAÇÃO TRANSFORMADORA ABRIGADA

As paredes da subestação devem ser de tijolo maciço com espessura mínima de 25 cm ou com outro material de resistência equivalente, teto de concreto armado, com 12 cm de espessura. A laje do piso deve ter uma espessura mínima de 12 cm e paredes rebocadas, exceção a concreto e tijolo à vista. As paredes internas e o teto devem ser pintados de branco e o piso deve ser de cimento alisado ou cerâmico de alta resistência mecânica e à abrasão. A cobertura deve ser impermeabilizada e possuir desnível conforme indicado nos padrões construtivos.

A Subestação será provida de portas metálicas abrindo para fora, ter fixada placa com a indicação: "Perigo de Morte - Alta Tensão" (ver figura 36 RIC-MT). A dimensão mínima da porta deveser 1,40x2,10m quando para acesso comum a pessoas e equipamentos, possuir dispositivo para cadeado ou fechadura padrão da concessionária e apresentar facilidade de abertura pelo lado interno.

A subestação possui três pontos de iluminação artificial de 100W cada, e ou equivalente, comandados por interruptor simples. q_{ssinad}

A subestação deve estar provida de extintores de incêndio junto à porta de acesso adequado para o uso em eletricidade, tipo CO2, com carga mínima de 6kg, conforme norma específica do Corpo de Bombeiros.

Deve ser afixado o Diagrama Unifilar completo e com legenda (emoldurado), em local visível na subestação, o mais próximo possível do(s) equipamento(s) de manobra;

A tela de proteção deve ser do tipo OTIS, construída com arame 12 BWG e malha de no máximo 13x13mm, deve estar protegido até o teto e porta com dispositivo para cadeado ou fechadura padrão da concessionária, e dispositivo para lacre.

As ferragens devem ter tratamento anti-corrosivo. Quando forem utilizadas portas e janelas de alumínio, devem ser observadas a resistência mecânica e as conexões de aterramento adequadas.

Equipamentos de manobra devem ser mantidos no espaço livre em frente aos volantes e alavancas, conforme NBR vigente. Em nenhuma hipótese, esse espaço livre pode ser utilizado para outras finalidades.

Os detalhes da Subestação estão em Planta em anexo.

6.4.1. ÁREA DE ABERTURA.

As aberturas p/ ventilação natural devem ser convenientemente dispostas, de modo a promover circulação do ar. As portas e janelas devem possuir venezianas fixas e situarem-se no mínimo, 20cm acima do piso exterior, terem fixada placa com a indicação: "Perigo de Morte - Alta Tensão" (ver figura 36 RIC-MT). Devem possuir venezianas fixas tipo "V" invertido (chapéu chinês). As janelas serão fabricadas conforme Desenho 16-1/3-GED-2859;

Calculo da área de abertura.

Subestação em alvenaria 25 cm de parede.

Área bruta ventilação
$$(m^2) \ge \frac{\text{volume da subestação } (m^3)}{6}$$

$$\frac{\text{volume da subestação (m}^3)}{6} = \frac{4,95x3,50x3,05}{6} = 8,80\text{m}^2$$

$$\frac{\text{volume da subestação (m}^3)}{6} = 8,80\text{m}^2 \text{ (área mínima de ventilação por norma)}$$

Área bruta de ventilação (m²): $4x(1,00 \times 2,10) + 1,40x2,10 = 11,34m^2$ (em projeto)

Assim, não é necessário o uso de ventilação forçada.

6.4.2. BARRAMENTOS

Os barramentos instalados na tensão primária (MT) devem ser em barramentos de cobre eletrolítico, tipo vergalhão, seção circular Ø5,16mm.

6.4.3. TRANSFORMADOR

Será utilizado um Transformador Trifásicos de 225kVA, classe de isolação 25kV, refrigerado à seco e instalado na cabine de transformação, com as seguintes características:

Potência nominal: 225kVA / Transformador padrão CEEE EDT001;

Tensão primária: 23,1kVTaps: 23,1/22,0/20,9kV;

Ligação: triângulo – estrela aterrada;

➤ Classe de isolação: 25kV;

➤ Tensão secundária: 380/220V;

Impedância: 5,0%;Frequência: 60Hz;

OBS: A unidade Transformadora nova, dever ter fabricante com representação oficial no RS, para efeito de garantia do produto e sua reposição. Considerar todas as condições e especificações da ABNT e do INMETRO.

6.4.4. CHAVE SECCIONADORA TRIPOLAR (OPERAÇÃO SEM CARGA).

Deve ser instalada chave seccionadora tripolar para operação com carga, com elos fusíveis, de uso interno, de operação manual, dotadas de alavanca de manobra. Seguem os dados das Chaves Seccionadoras e os fusíveis com suas características:

Tensão Nominal: 23,1kV;
Corrente Nominal: 400A;
Nível de Isolamento: 25kV;

Fusíveis HH: 10 a 25

A chave seccionadora para a operação sem carga deve ter o seguinte aviso colocado de modo bem visível e próximo do dispositivo de operação: "Esta chave não deve ser manobrada em carga" e placa com a indicação: "Perigo de Morte - Alta Tensão" (ver figura 36 RIC-MT). A chave seccionadora deve estar intertravada com o disjuntor geral de BT. O micro interruptor deve ser instalado junto ao punho de acionamento da chave seccionadora.

A instalação de chave seccionadora deve ser feita de forma que seu fechamento não ocorra pela ação da gravidade e quando aberta, as partes móveis não fiquem energizadas. Toda chave seccionadora deve ter dispositivo que impeça a sua abertura ou fechamento acidental (travamento mecânico). O punho de acionamento da seccionadora deve ficar a 1,20 m de altura do piso e diretamente conectado à malha de aterramento.

6.5. ATERRAMENTO

Nos Para-Raios, o cabo de descida do aterramento será em cobre nu #35mm², e se possível deverá descer por dentro do poste.

No aterramento da carcaça e neutro do transformador o cabo será em cobre nu#50mm² e deverá ter conexão a malha de aterramento. As janelas, porta e portões também serão aterrados com cordoalha de cobre nu #25mm² c/ interligação a malha de aterramento em torno da cabine.

Haverão hastes de aterramento em aço cobreado Ø16mmx2400mm, com cobertura de cobre mínimo de 240 micra, enterrada total e verticalmente em torno da cabine. Serão interligadas através de condutor em cobre nu #50mm², com enterramento a 0,6m abaixo do nível do solo, para onde deverão convergir todos os cabos de aterramento (ligação equipotencial), sendo as conexões feitas com solda exotérmica. Demais detalhes estão na planta que trata do projeto da Subestação.

OBS.: Este aterramento deverá ser conectado á malha principal de aterramento ou Anel Inferior do SPDA, com vistas a equipotencialização de todo o sistema.

7. REDES DE ALIMENTAÇÃO DE ENERGIA ELÉTRICA

7.1. CONCESSIONÁRIA

A Energia Elétrica será fornecida pela concessionária, em Média Tensão, através do ramal que irá alimentar a Subestação. Além desta, haverá uma rede de energia elétrica suplementar alternativa para manter a continuidade do fornecimento na falta de Energia Elétrica para Cargas Essenciais, por meio de um Grupo Moto Gerador.

7.2. GERADOR ENERGIA ELÉTRICA

O Gerador de Energia Elétrica tem como função principal suprir o fornecimento de Energia Elétrica para Cargas Essenciais quando houver descontinuidade no fornecimento desta pela Concessionária. Sempre que houver a descontinuidade, este automaticamente entrará em operação para alimentar suas cargas essenciais.

O regime de trabalho será em caráter emergencial (Standby), em substituição a Energia Elétrica da concessionária fornecedora.

O Grupo Gerador Elétrico de Emergência deverá atender as cargas solicitadas pelo Projeto Elétrico. A Potência transferida para o Grupo Moto Gerador será de 53,9kVA.

Considerando que o mesmo trabalha em regime exclusivo de emergência e que atenderá na sua operação as cargas previstas, somente em caso descontinuidade de fornecimento de Energia Elétrica por parte da concessionária, sendo o fator de multiplicação para dimensionamento do gerador de 1,4. Assim, foi definido um Grupo Moto Gerador de 75kVA.

O Quadro de Transferência Automática (QTA) deverá atender as condições operativas do Grupo Moto Gerador e a sua condição de operacionalidade, inserção e retirada.

O Grupo Moto Gerador Elétrico deverá atender somente os Centros de Distribuição que possuam o objetivo de manter a continuidade de Energia Elétrica e desta forma, haverá o QGBT-E para as Cargas Essenciais.

7.2.1. ISOLAMENTO TÉRMICO

As tubulações de escape e o silencioso, instalados na sala do grupo moto gerador, deverão ser isolados termicamente na espessura adequada para que a temperatura da superfície externa da capa do isolamento seja inferior a 65°C, com o grupo funcionando a plena carga. Para esse atendimento, admitese o uso de calhas concêntricas sobrepostas, amarradas através de cintas galvanizadas, porém defasadas. A isolação deverá ser protegida externamente com capa de alumínio liso fixadas através de parafusos/cintas galvanizadas de modo que fique um conjunto rígido e uniforme. Os flexíveis e juntas de expansão térmica não deverão ser isolados.

As tubulações de escape deverão ser montadas e apoiadas em suportes metálicos e não poderão sofrer esforço sobre o grupo. Nos trechos onde forem instaladas as juntas de expansão, deverão ser previstos pontos de ancoragem utilizando perfil laminado de aço e suportes guias da tubulação para permitir o deslocamento no sentido da expansão. Não será permitido o uso de tirantes para suportação. As tubulações não poderão ser suportadas pela alvenaria dos furos de passagem, devendo existir folga de 100mm no diâmetro do furo, que deverá ser preenchido com cordão isolante. O acabamento deverá ser realizado com chapa metálica bipartida.

Se houver trechos verticais externos, deverão ser instaladas juntas de expansão térmica a cada 20 metros. As juntas de expansão térmica deverão ser instaladas distendidas, com comprimento inicial estabelecido pelo fabricante. As terminações das tubulações de escape deverão ser horizontais, com corte de 45°, caimento de 1% e proteção com tela de malha de 10mm, contra entrada de pequenos animais. Não será permitido o uso de tampas articuladas.

Toda tubulação, acessórios e suportes do sistema de escape deverá receber tratamento de proteção, conforme segue: limpeza com escova de aço; limpeza com solvente; duas demão de pintura para alta temperatura, antes da instalação; e retoque da pintura após a instalação.

7.2.2. ISOLAMENTO ACÚSTICO

Deverá ter um sistema abafador no silenciador do sistema de exaustão (descarga) do motor do Gerador. Este deverá ser posicionado de tal maneira que não haja projeção da fumaça no prédio e em áreas de circulação de pessoas. O silenciador deverá de alto desempenho para absorção de ruído, tipo standard, fabricado em aço carbono e revestido com pintura térmica à base de alumínio, para operação em altas temperaturas.

A critério do fabricante deverá ser considerado sapatas com elementos anti vibratórios na base do Grupo Moto Gerador.

11

SSP/FORCA-TAF/36809911

7.2.3. RESERVATÓRIO DE COMBUSTÍVEL

O sistema de abastecimento do Grupo Gerador prevê a capacidade de 200 litros de combustível (diesel) e bacia de contenção, para caso de vazamento com capacidade superior ao tanque e atendimento das normas vigentes na Prevenção de Riscos Ambientais (PPRA – NR-09/Ministério do Trabalho e Emprego) e NR-20:2012, item 20.17.

A bacia de contenção será do tipo em aço carbono 3mm SAE 1020, nas dimensões em conformidade ao projeto do fabricante.

O sistema será composto de reservatório de 200L integrado à base do Grupo Moto Gerador, ou instalado interior da sala do gerador.

Caso o reservatório de 200 litros não seja incorporado ao Grupo moto Gerador deverá ser cilíndrico e horizontal , preferencialmente, de polietileno de média densidade, tipo autoportante, translúcido, com graduação de nível na face lateral, tampa de abastecimento com respiradouro, filtro linhas de alimentação e retorno, dotado de conjunto de materiais para interligação a motor diesel, constituídos de abraçadeiras tipo fita metálica e mangueiras translúcidas de alimentação e retorno, tampão de escoamento e com sistema de aterramento.

A empresa licitada deverá fornecer o reservatório de combustível completo e todos os componentes necessários, inclusive aqueles que, embora não citados claramente, sejam necessários e indispensáveis para se atingir o perfeito funcionamento de todo o sistema.

A PROPONENTE deverá apresentar projeto elétrico completo do Grupo Gerador de Energia Elétrica, contemplando os requisitos acima e constantes na Planta Elétrica, bem como todos os requisitos técnicos e ambientais pertinentes e exigidos pela Legislação e órgãos fiscalizadores.

OBS: As solicitações básicas do Grupo Gerador de Energia Elétrica apresentam-se no item acima e na Planta Elétrica referente ao Grupo Gerador de Energia Elétrica.

8. ALIMENTADORES

Os circuitos alimentadores de Energia Elétrica vindos dos QGBT-NE ou QGBT-E para os Quadros de Distribuição estarão distribuídos conforme consta em projeto específico.

A seção nominal de condutores deverá estar de acordo com o dimensionamento para atender os critérios de Corrente Nominal, corrente de Curto-Circuito, Queda de Tensão. Os Condutores serão de cobre c/ isolamento em 0,6/1,0kV.

Conforme projeto, o Transformador terá um conjunto de cabos conectados ao Disjuntor Geral e desta para o Quadro Geral de Baixa Tensão de Cargas Não Essenciais (QGBT-NE). O conjunto de cabos terá a capacidade de condução correspondente ao Transformador e que corresponde aos cabos unipolar (1x#150mm²) (3F+N). Para a conexão de fases junto ao Disjuntor Geral deverá ser providenciada terminação compatível com os cabos, com o polo de conexão do Disjuntor e com o polo de cada fase do Transformador.

Os condutores deverão ser do tipo ANTICHAMA e possuir gravadas em toda sua extensão as especificações de: nome do fabricante, bitola, isolação, temperatura e certificado do INMETRO. Também devem atender a NBR 13.248, quanto a não propagação de chama, livres de halogênio e com baixa emissão de fumaça e gases tóxicos.

9. QUADRO GERAL DE BAIXA TENSÃO (QGBT)

O QGBT-NE e o QGBT-E serão do tipo pedestal, o alimentador deverá ser conectado ao Disjuntor Geral.

O QGBT-NE deverá ser em um quadro para acondicionar as proteções elétricas, distribuindo energia para cada um dos Circuitos Alimentadores dos Centros de Distribuição e alimentar o Quadro de Transferência Automática (QTA) situado na Sala do Grupo Motogerador.

O QTA irá alimentar as cargas estabelecidas como críticas e que serão alimentadas pela concessionária, ou na ausência da mesma, pelo Grupo Moto Gerador de Energia Elétrica. Sua configuração deverá atender as Normas NBR5410 (ABNT) e NR-10 do Ministério do Trabalho em termos de capacidade de corrente, dispositivos de reserva e segurança nas Instalações Elétricas.

Os QGBT's deverão ser confeccionados, segundo a NBR60439-1:2003, ter capacidade para abrigar Disjuntores Trifásicos Tipo Caixa Moldada, Barramento Geral para suportar a corrente atuante, estrutura em chapa de aço 14USG, Grau de Proteção IP44, tratamento anticorrosivo e pintura eletrostática Epóxi a pó, proteção de acrílico das partes energizadas, espelho frontal metálico, etiquetas de identificação de cada alimentador (no disjuntor e no espelho – redundância), porta frontal c/ fechadura e chave padrão, Porta Documentos na parte interna da Porta de acesso, Quadro de Cargas com todas as características dos Centros de Distribuição e Diagrama Unifilar Geral correspondente. O QGBT-NE terá dimensões aproximadas de 0,80x0,50x2,00m e o QGBT-E 0,80x0,50x2,00m.

A pintura externa será na cor Cinza Munsel 6.5. Deverá haver um Barramento de Neutro e um Barramento de Terra separados dentro do QGBT-NE, onde os cabos de Neutro proveniente do Transformador deverão ser conectados ao barramento de Neutro. O Barramento de Terra deverá ser conectado à Barra de Equipotencialização nesta sala através de um cabo de cobre nu de 50mm².

9.1. PROTEÇÃO ELÉTRICA GERAL

A proteção do disjuntor geral estará de acordo com a potência Demandada e Potência Máxima fornecida pelos Transformadores, neste caso, 225kVA. A Demanda Máxima da Subestação deverá ser considerada como sendo In = 350A. Deverá ter modelo construtivo adequado, atender a Corrente de Interrupção de 35kA na tensão trifásica de 380VCA.

A proteção do Quadro Geral de Baixa Tensão de Cargas Não essenciais – QGBT-NE estará de acordo com a potência Demandada, neste caso, 199,3kVA. A Corrente Máxima deverá ser considerada como sendo In = 350A.

Assim, o Disjuntor Geral para o QGBT-NE solicitado deverá ter In=350A, com ajustes percentuais até este valor máximo (0,6-1,0). Deverá ter modelo construtivo adequado, atender a Corrente de Interrupção de 20kA na tensão trifásica de 380VCA. O Disjuntor deverá estar em acordo como o Painel de QGBT-NE em termos de características elétricas e também físicas, atendendo plenamente os requisitos da NR-10 e demais normas pertinentes. O disjuntor deverá possuir certificação do INMETRO, sendo o fabricante e o modelo específico disponível no mercado local.

A proteção dos circuitos Alimentadores dos Centros de Distribuição (CD) e instalados nos QGBT's será feita por meio de disjuntores termomagnéticos em caixa moldada, com um disparador térmico (bimetal) para proteção contra sobrecargas e com um disparador eletromagnético para proteção contra curtos-circuitos, conforme NBR 5361. A capacidade nominal estará de acordo com cada circuito definido no Diagrama Unifilar, Corrente Máxima de interrupção mínima de 20kA e demais

características elétricas e físicas semelhantes ao Disjuntor Geral do QGBT. Os Disjuntores dos alimentadores de CD não serão ajustáveis.

10. PROTEÇÕES ELÉTRICAS

10.1. DISPOSITIVO DE PROTEÇÃO CONTRA SURTOS (DPS)

Os Dispositivos de Proteção contra Surtos (DPS) tem por finalidade proteger a instalação elétrica de oscilações elétricas em nível de tensão oriundas dos mais diferentes fenômenos associados as mesmas. Assim, originalmente temos surtos de tensão oriundos de descargas atmosféricas e surtos oriundos de alguma modificação na configuração da rede ou de sua operação. Conforme a NBR5410, que exige o emprego do DPS contra descargas atmosféricas, denominado de Tipo I, no painel de entrada de qualquer edificação, a exigência está condicionada diretamente à existência de um Sistema de Proteção contra Descargas Atmosféricas na Edificação ou ainda, a entrada de energia ser suprida por rede aérea. Para demais pontos da Instalação Elétrica emprega-se apenas para proteção contra surtos oriundos da rede o DPS denominados do tipo II, protegendo ao longo da instalação, os circuitos contra estas sobretensões.

Para este Projeto Elétrico constituído por SPDA e rede aérea na Entrada de Energia considerase:

Do tipo para montagem em quadro, composto por quatro descarregadores classe C, montados sobre base integrada com conexão para terra e conforme aplicação a seguir:

Nos QGBT's – Ser do Tipo combinado I + II, devendo ter capacidade de proteção mínima de 20kA (curva do tipo 10/350µs e 8/20µs – micro segundos).

Nos CD's- Ser do Tipo II, devendo ter capacidade de proteção In máxima de 20kA (curva 8/20µs).

Os descarregadores são cartuchos extraíveis com sinalização de defeito, para sua troca não é necessário desligar os alimentadores, tensão de funcionamento 220/400V, atendendo as normas brasileiras e a IEC 61643-1.

10.2. ATERRAMENTOS

DO NEUTRO - deverá ser feito, solidariamente, o mais próximo do transformador, com condutor em bitola indicada no projeto e ligado ao sistema de aterramento.

ATERRAMENTO DE PROTEÇÃO - Para proteção contra choques elétricos por contato indireto todos os circuitos serão dotados de condutor de proteção (terra). O esquema utilizado do aterramento funcional será o TN-S (condutor neutro e condutor terra distintos, conforme NBR 5410/2004).

HASTE DE ATERRAMENTO - Todos os aterramentos serão realizados através de hastes cobre tipo Cooperweld Ø16mm x 2,40m e conector, enterrados verticalmente no solo.

LIGAÇÃO EQUIPOTENCIAL - Todo o sistema de aterramento deverá ser interligado pelo condutor de equipotencialidade à malha principal da Edificação

OBS: A resistência de aterramento não será superior a 10 Ohms em qualquer época do ano

11. GENERALIDADES DO PROJETO/EXECUÇÃO

- ➤ A execução da obra conforme projeto elétrico e o perfeito funcionamento das instalações dentro das condições desejadas, parâmetros especificados, critérios de segurança, operação dos dispositivos e equipamentos, atendimento de qualidade do material especificado, qualidade na montagem e instalação, estará sob inteira responsabilidade da Empresa executante e a Fiscalização da Obra, cabendo à fiscalização, orientar/ou impugnar quaisquer serviços de montagem das redes e ou materiais empregados que não estiverem em conformidade com a especificação e/ou projeto.
- ➤ Estará sob o critério da Fiscalização, modificar e/ou substituir qualquer item do projeto que se fizer necessário, tornando-se de sua responsabilidade e sem qualquer consequência ou ônus sobre os autores originais do projeto.
- ➤ Os Materiais e Equipamentos a serem instalados na presente obra, deverão ser apresentados previamente a Fiscalização; e/ou apresentados catálogos dos materiais ofertados, evitando desta forma a instalação de materiais e/ou produtos em desconformidade com o especificado.
- ➤ No final da execução da obra, deverá ser anexado a documentação *As Built* a este processo, para que sejam consideradas todas especificações conforme projeto e/ou modificações efetuadas.
- ➢ Para execução deste projeto, deverão sempre ser observadas as orientações contidas na NBR 5410/2004, NBR 5419/2015, RIC/CEEE ou empresa concessionária local e normas da concessionária de telefonia e/ou Rede corporativa.
- ➤ Salienta-se que deve ser um imperativo seguir os critérios determinados pela NR-10 ("Segurança em Instalações e Serviços em Eletricidade"), NR-33 ("Segurança e Saúde no Trabalho em Espaços Confinados") do Ministério do Trabalho e Emprego − MTE e legislação vigente para trabalhos em altura durante a execução da Obra, sendo estes já considerados inicialmente no Projeto Elétrico.
- Toda a linha de materiais deve possuir certificação em território nacional e liberação do Inmetro atendendo as especificações de qualidade e segurança. Esta medida deve garantir segurança na instalação elétrica, continuidade de atendimento, disponibilizando qualidade física, do patrimônio e da operacionalidade.
- ➤ Todos os materiais, dispositivos e equipamentos listados neste memorial descritivo, devem ter garantia de disponibilidade em mercado local, para sua futura substituição em caso de falha operacional ou manutenção corretiva.
- ➤ Todos os serviços deverão ser executados com esmero e capricho, a fim de manter um bom nível de acabamento e garantir confiabilidade e segurança das instalações elétricas.

As considerações acima foram baseadas em questões técnicas e regidas pelas normas vigentes.

OBSERVAÇÕES:

 É imprescindível por parte do executante do Projeto Elétrico, efetuar uma visita ao local da obra e a verificação "in loco" das condições e medidas físicas, condições do trajeto e avaliação Global dos trabalhos.

12. NORMAS TÉCNICAS E REGULAMENTADORES

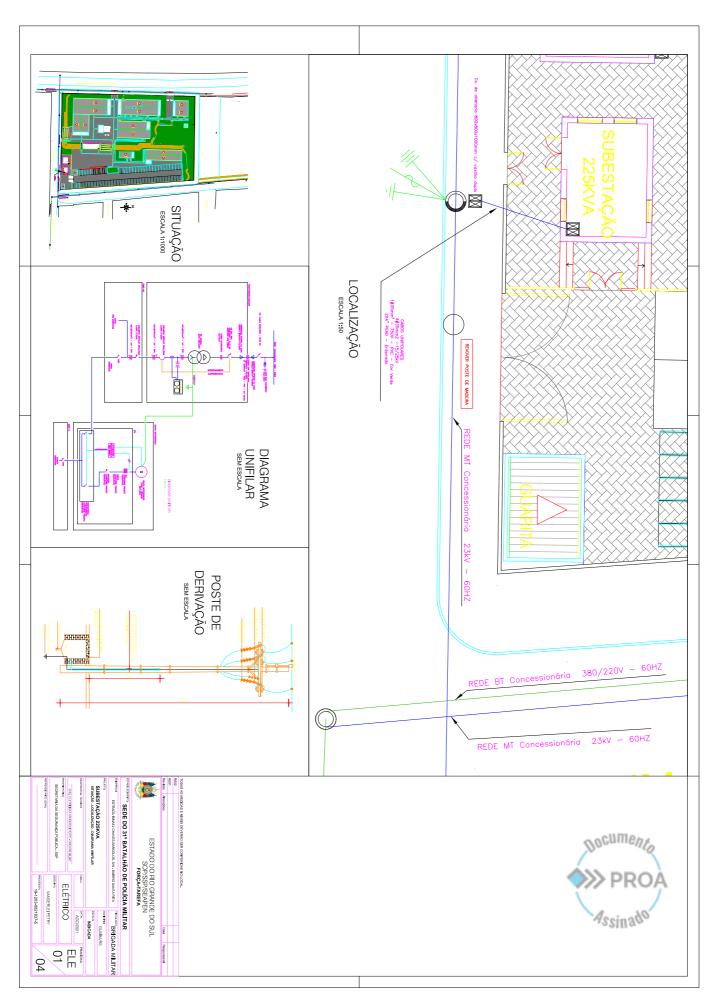
As principais normas Regulamentadoras e Técnicas estão sendo indicadas a seguir como forma orientativa, não excluindo a necessidade de considerar demais normas complementares não citadas.

- > GED-2855, GED-2856, GED-2858, GED-2859, GED-2861.
- ➤ Lei de Licitações e Contratos Públicos Lei 8.666/1983.
- ➤ Regulamento para Instalação Consumidora em Baixa Tensão RIC Concessionária local.
- Regulamento para Instalação Consumidora em Média Tensão RIC Concessionária local.
- ➤ NBR5410 "Segurança em Instalações e Serviços em Eletricidade" ABNT.
- ➤ NBR5419 "Proteção contra descargas atmosféricas" SPDA ABNT.
- ➤ NBR14039 "Instalações Elétricas de Média Tensão de 1kV a 36kV"- ABNT.
- ➤ NBR5444 "Símbolos Gráficos para Instalações Elétricas" ABNT.
- ➤ NBR5413 "Procedimento para Iluminação de Interiores" ABNT.
- ➤ NBR14565—"Procedimento básico para elaboração de Projetos de Cabeamento de Telecomunicações para rede interna estruturada" ABNT.
- ➤ IEEE -1159 "Recomendações para Qualidade de Energia" IEEE.
- ➤ IEEE -0519 "Recomendações para Fator de Potência dos Harmônicos" IEEE.
- ➤ NR-04 "Serviço especializado em Eng. de Segurança e em Medicina do Trabalho" MTE.
- ➤ NR-06- "Equipamentos de Proteção Individual EPI" MTE.
- ➤ NR-07 "Programa de Controle Médico de Saúde Ocupacional" MTE.
- ➤ NR-09 "Programa de Prevenção de Riscos Ambientais PPRA" MTE.
- ➤ NR-10 "Segurança em Instalações e Serviços em Eletricidade" MTE.
- ➤ NR-16 "Atividades e Operações Perigosas" MTE.
- ➤ NR-26 "Sinalização de Segurança" MTE.
- ➤ NR-33 "Segurança e Saúde nos Trabalhos em Espaços Confinados" MTE.
- > Demais normas pertinentes.

Porto Alegre, 08 de setembro de 2021.

Eng. Elet. Vanderlei Petry CREA 88.887 / IF 3680991-1 Secretaria de Obras e Habitação

Nome do documento: 19-1203-0021837-5_MD_SUB_31_BPM_GUAIBA_R000.pdf


Documento assinado por Órgão/Grupo/Matrícula Data

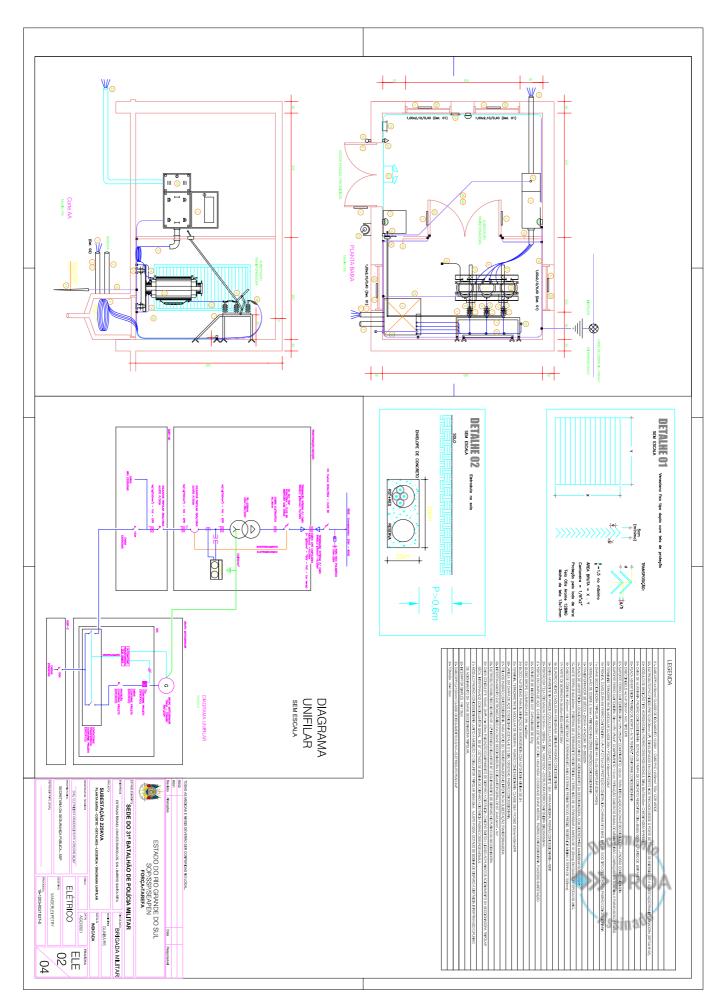
Vanderlei Adriano Petry SSP / FORCA-TAF / 36809911 22/09/2022 17:00:33

Nome do documento: SUB_31_BPM_GUAIBA_ELE 01-04.pdf

Documento assinado por

Órgão/Grupo/Matrícula

Vanderlei Adriano Petry


SSP / FORCA-TAF / 36809911

22/09/2022 17:00:31

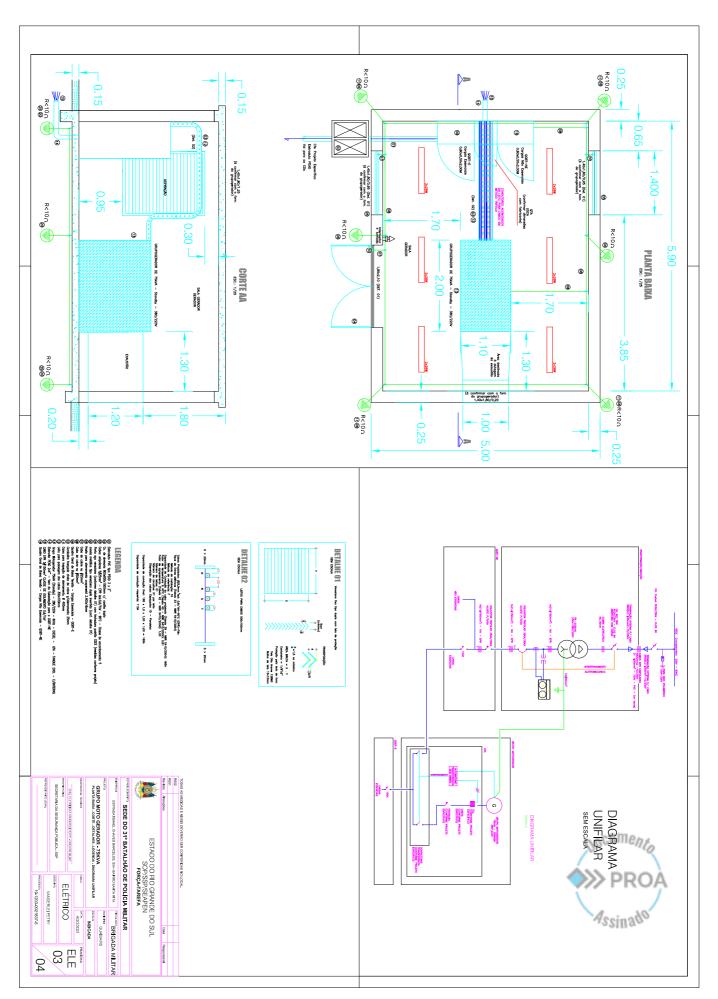
Nome do documento: SUB_31_BPM_GUAIBA_ELE 02-04.pdf

Documento assinado por

Órgão/Grupo/Matrícula

Data

Vanderlei Adriano Petry


SSP / FORCA-TAF / 36809911

22/09/2022 17:00:32

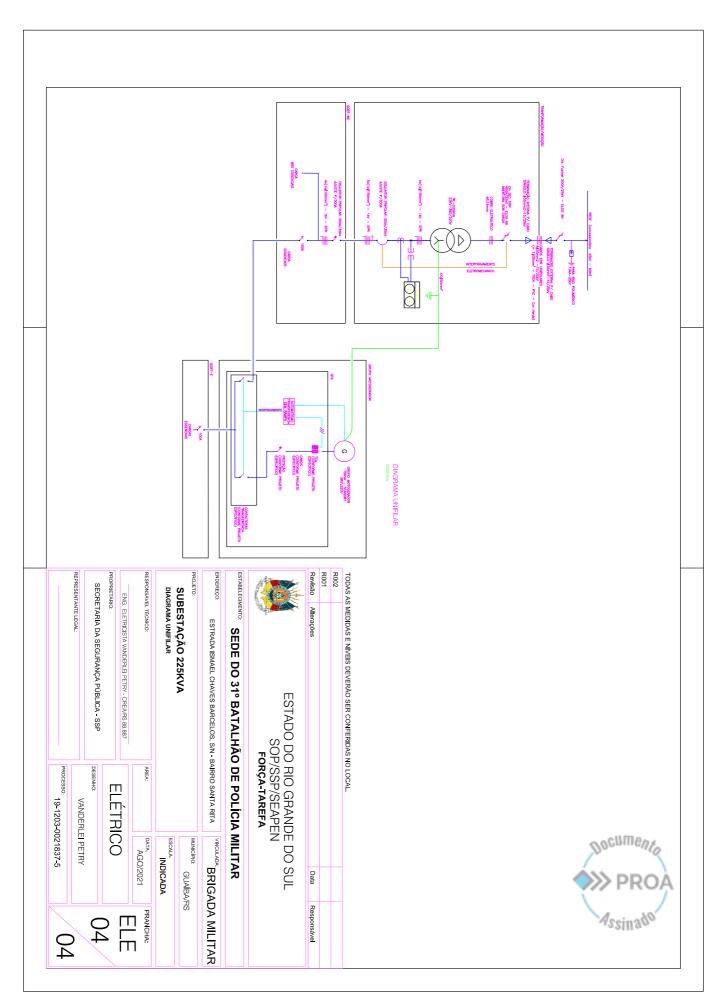
Nome do documento: SUB_31_BPM_GUAIBA_ELE 03-04.pdf

Documento assinado por

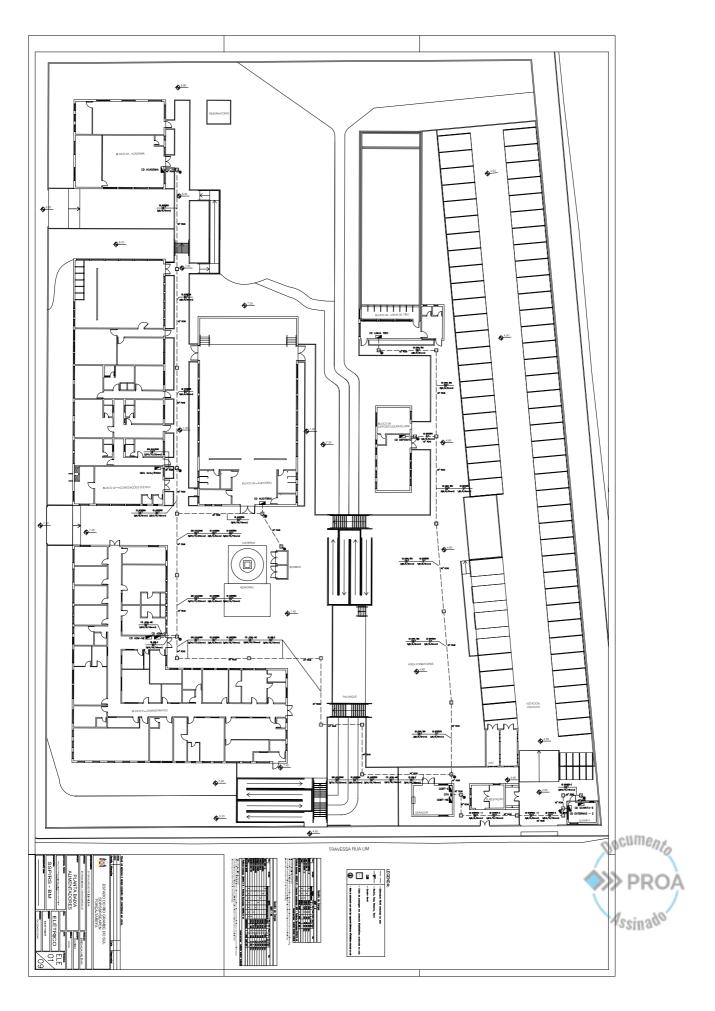
Órgão/Grupo/Matrícula

Data

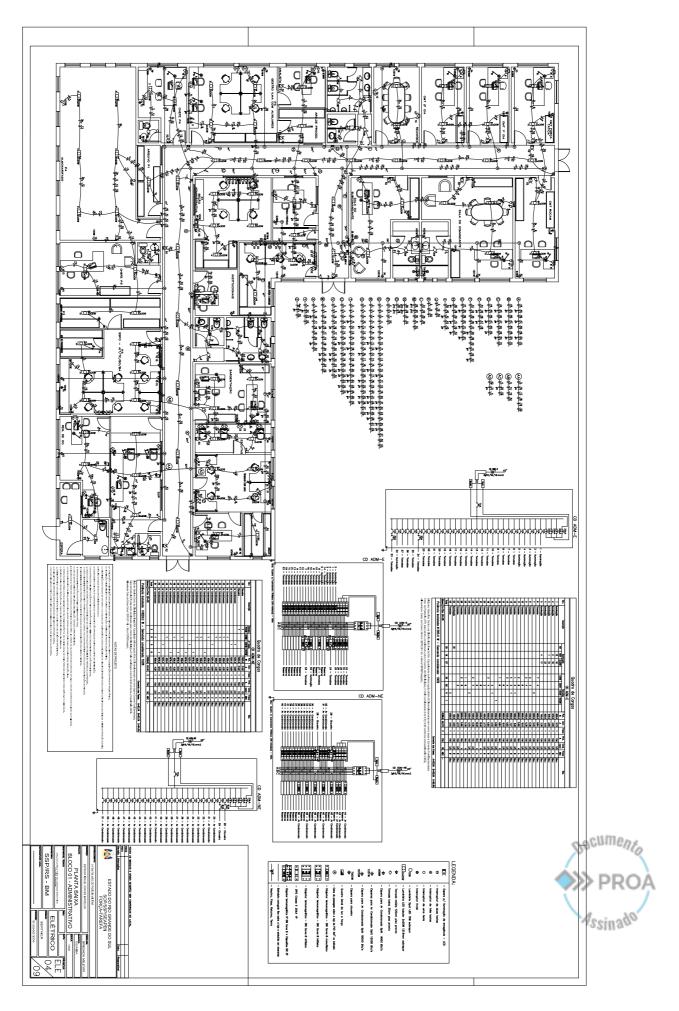
Vanderlei Adriano Petry


SSP / FORCA-TAF / 36809911

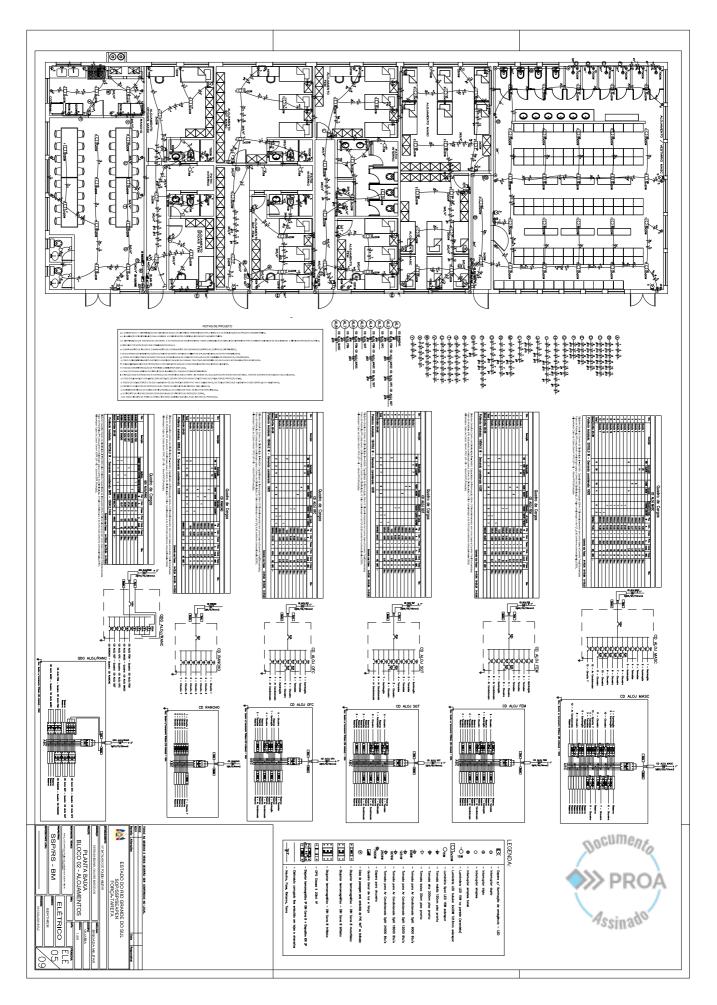
22/09/2022 17:00:33



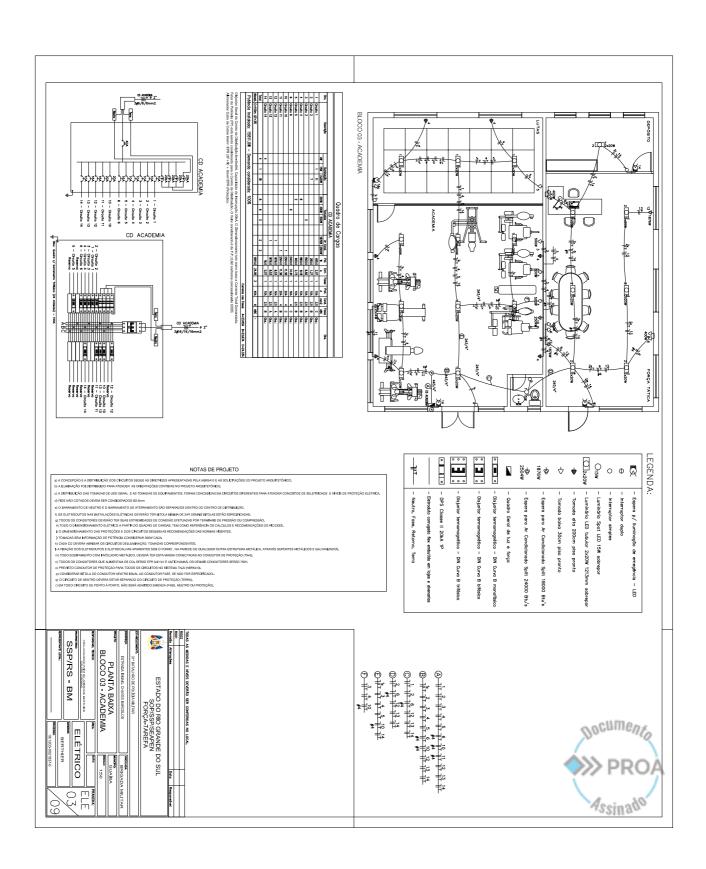
Nome do documento: 19_1203_0021837_5 _ELE_PL_PLA_ALIM_R000.pdf


Documento assinado por Órgão/Grupo/Matrícula Data

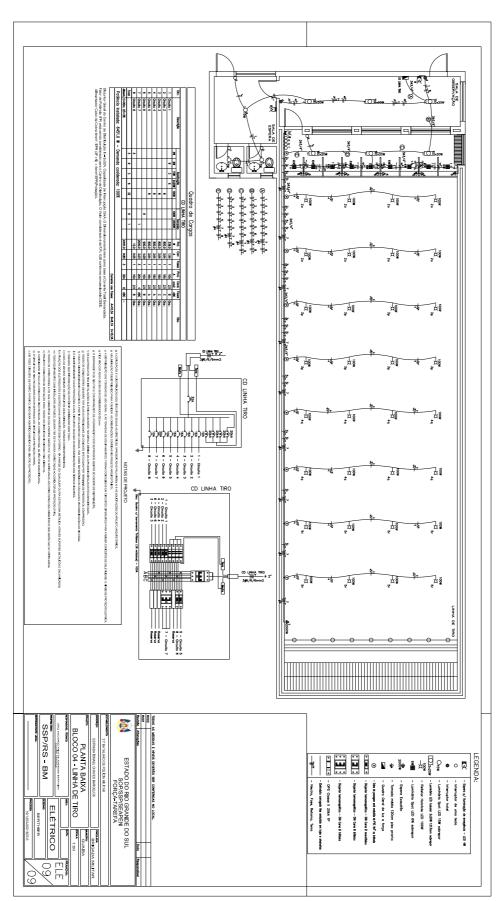
Eduardo Paim de Andrade Berthier SSP / FORCA-TAF / 36550591 23/09/2022 11:49:23


Nome do documento: 19_1203_0021837_5 _ELE_PL_PLA_BL01_ADM_R000.pdf

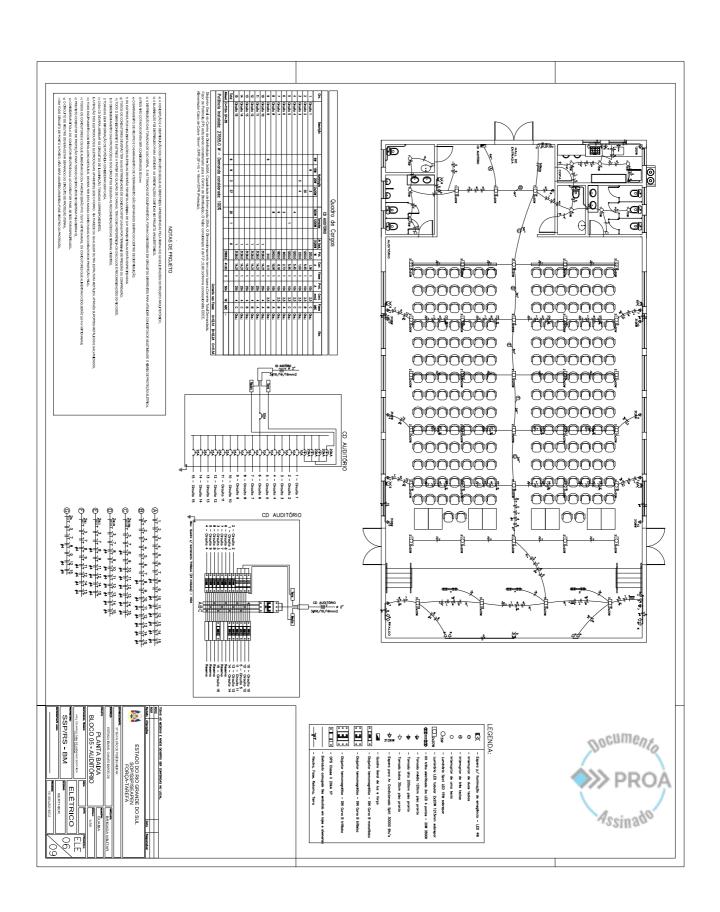
Documento assinado por Órgão/Grupo/Matrícula Data


Nome do documento: 19_1203_0021837_5 _ELE_PL_PLA_BL02_ALOJ_R000.pdf

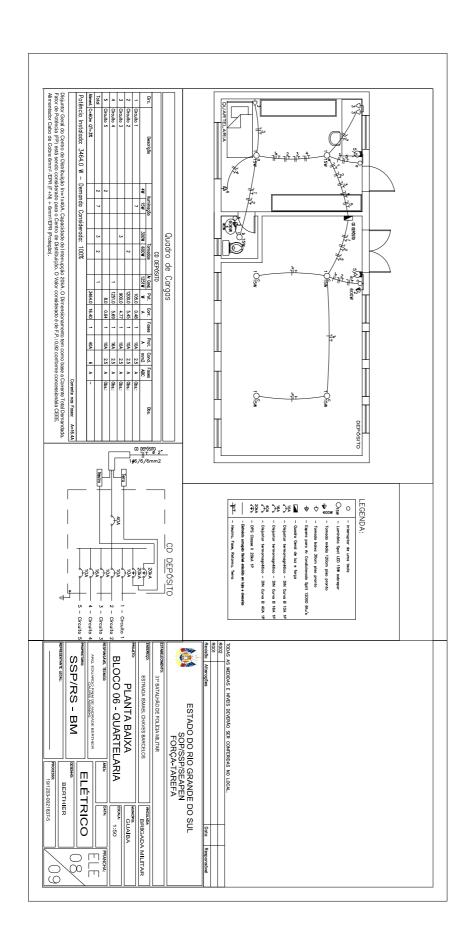
Documento assinado por Órgão/Grupo/Matrícula Data


Nome do documento: 19_1203_0021837_5 _ELE_PL_PLA_BL03_ACAD_R000.pdf

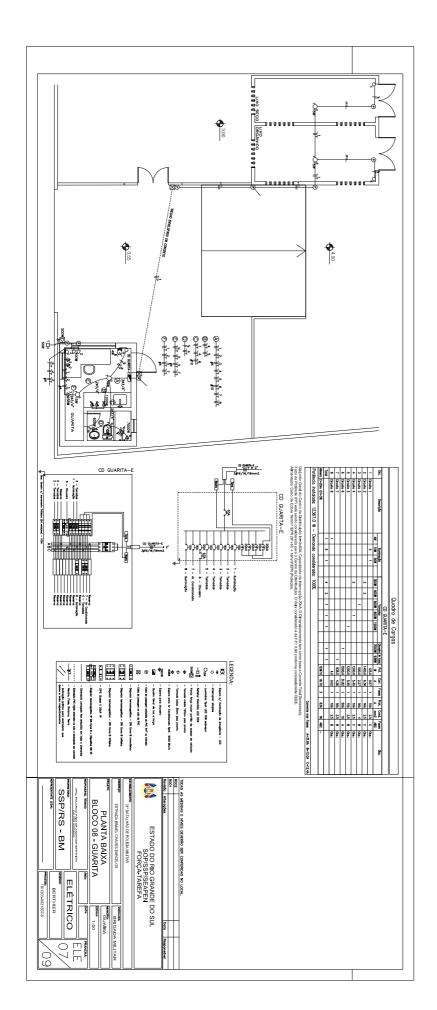
Documento assinado por Órgão/Grupo/Matrícula Data


Nome do documento: 19_1203_0021837_5 _ELE_PL_PLA_BL04_LINHA_TIRO_R000.pdf

Documento assinado por Órgão/Grupo/Matrícula Data

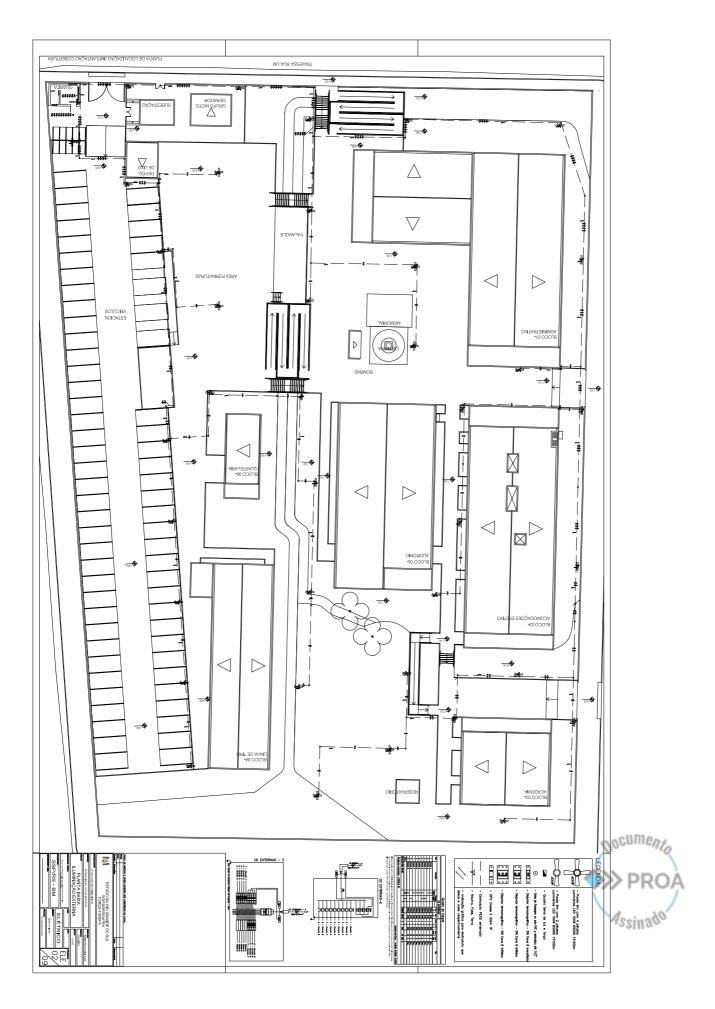

Nome do documento: 19_1203_0021837_5 _ELE_PL_PLA_BL05_AUDIT_R000.pdf

Documento assinado por Órgão/Grupo/Matrícula Data


Nome do documento: 19_1203_0021837_5 _ELE_PL_PLA_BL06_QUART_R000.pdf

Documento assinado por Órgão/Grupo/Matrícula Data

Nome do documento: 19_1203_0021837_5 _ELE_PL_PLA_BL08_GUARITA_R000.pdf


Órgão/Grupo/Matrícula Documento assinado por Data

SSP / FORCA-TAF / 36550591 Eduardo Paim de Andrade Berthier 23/09/2022 11:49:25

Folha n.º: _____ Rubrica:

ESTADO DO RIO GRANDE DO SUL SOP/SSPSJSPS FORÇA-TAREFA

MEMORIAL DESCRITIVO PROJETO ELÉTRICO

31 BPM - PRAÇA

PROCESSO:

OBJETO: Secretaria da Segurança Pública

OBRA: Praça 31 BPM MUNICÍPIO: Guaíba

1 - APRESENTAÇÃO

O presente memorial descritivo tem por finalidade dar uma orientação para a execução da instalação elétrica na Praça junto ao 31 BPM no município de Guaíba, RS. O perfeito funcionamento das instalações ficará sob responsabilidade da firma licitante, estando a critério da Fiscalização, impugnar quaisquer serviços e materiais que não estiverem em conformidade com estes projetos.

Para execução destes serviços deverão sempre ser observadas as orientações contidas nas Normas Brasileiras (NBR) e recomendações da concessionária de energia local.

Deverão ser fornecidos Equipamentos de Proteção Individual (EPI) específicos para trabalhos em baixa tensão: roupas com tecido anti-chama, capacetes, luvas, botinas, óculos de proteção entre outros.

2 - ALIMENTAÇÃO

O suprimento de energia elétrica em Baixa Tensão, em 380/220V, será por circuito alimentador através de um eletroduto de 11/4" derivado do painel de medição a ser executado.

Os condutores serão em PVC, isolação 750V, classe de encordoamento 5, singelos, com bitola, quantidade e especificação nas plantas baixas anexas.

3 - QUADROS DE DISTRIBUIÇÃO

O Quadro de distribuição será de alumínio, tipo embutir na parede, com porta em alumínio pintado, trinco, espelho, dispositivo de comando e proteção, montagem em trilhos, e barra de neutro e terra. Deverão ter porta etiquetas e espaço para abrigar os disjuntores previstos nas plantas baixas em anexo. Será padrão DIN com espaços para reserva, visando futuras ampliações.

Será aterrado através dos aterramentos existentes.

Folha n.º: _____ Rubrica:

ESTADO DO RIO GRANDE DO SUL SOP/SSPSJSPS FORÇA-TAREFA

4 - PROTEÇÃO

A proteção de todos os circuitos terminais será feita por meio de disjuntores termomagnéticos, com um disparador térmico (bimetal) para proteção contra sobrecargas e com um disparador eletromagnético para proteção contra curtos-circuitos, conforme NBR 5361. A capacidade de interrupção mínima deverá ser maior que 20 kA. Também sempre que indicada, deverá ser utilizada a proteção através de disjuntor tipo DR (diferencial residual), como proteção complementar, de acordo com ABNT NBR 5410/04 (correção 2008).

4.1- PROTEÇÃO GERAL

Os circuitos alimentadores serão protegidos por um disjuntor de 50A que deverá ser instalado no Quadro Geral.

4.2- PROTEÇÃO DOS CIRCUITOS

Cada circuito terá proteção individual com disjuntor termomagnético conforme especificado nos quadros de cargas e diagramas unifilares nas plantas baixas em anexo.

4.3 - ATERRAMENTO DE PROTEÇÃO

Para proteção contra choques elétricos por contato indireto todos os circuitos serão dotados de condutor de proteção (terra).

O esquema utilizado será o TN-S (condutor neutro e condutor terra distintos, conforme NBR 5410:2004 (correção 2008), com o condutor neutro e o condutor de proteção, ambos em cor verde.

Todos os elementos metálicos no interior e exterior da edificação, bem como corrimãos metálicos, grades metálicas entre outros devem ser aterrados.

Todas as carcaças de luminárias e reatores deverão ser ligadas com o fio terra.

4.4 - ATERRAMENTO DO NEUTRO

Será feito no CD Geral, com condutor em bitola indicada no projeto e ligado à haste de aterramento. Deverá ser na cor verde.

5 - CONDUTORES

ESTADO DO RIO GRANDE DO SUL SOP/SSPSJSPS FORÇA-TAREFA

Os condutores deverão ser do tipo ANTICHAMA e possuir gravadas em toda sua extensão as especificações de nome do fabricante, bitola, isolação, temperatura e certificado do INMETRO.

Também devem atender a NBR 13.248, quanto a não propagação de chama, livres de halogênio e com baixa emissão de fumaça e gases tóxicos.

Não serão permitidas emendas nos condutores alimentadores de circuitos, bem como emendas no interior dos eletrodutos.

Nas derivações os condutores deverão ter seu isolamento reconstituído com fita isolante de auto-fusão.

O padrão das cores dos condutores elétricos, conforme especificações da norma ABNT NBR 5410/08. A convenção de cores para as instalações deverá seguir o seguinte padrão:

- Azul (neutro), Branco (retorno), Preto/Vermelho (fases), Verde (terra).

A bitola mínima a ser utilizada será de #2,5 mm² para todos os circuitos.

Poderá ser empregado parafina ou talco industrial para auxiliar na enfiação dos condutores.

Os condutores só devem ser enfiados depois de completada a rede de eletrodutos. A enfiação só deve ser iniciada após a tubulação ser perfeitamente limpa e seca.

6 - ELETRODUTOS

6.1 - PVC RÍGIDO

Serão utilizados eletrodutos em PVC rígido na alimentação do Quadro de Distribuição e no bloco de sanitários. Devem ser roscáveis e de diâmetro mínimo de 25 mm (3/4"), ou indicado em planta.

Todos eletrodutos previstos serão instalados embutidos nas paredes e lajes.

6.2 - PEAD

Serão utilizados eletrodutos de Polietileno de Alta Densidade de 2 polegadas com parede dupla enterrados à 60cm de profundidade no solo.

6.3 - FIXAÇÕES E CONEXÕES

As curvas e luvas deverão possuir as mesmas características dos eletrodutos,

Os eletrodutos só devem ser cortados perpendicularmente ao seu eixo. Deve ser retirada toda a rebarba suscetível de danificar a isolação dos condutores.

gocument.

Folha n.º: ______ Rubrica: _____

ESTADO DO RIO GRANDE DO SUL SOP/SSPSJSPS FORÇA-TAREFA

7 - INTERRUPTORES, TOMADAS, FOTOCÉLULAS

Os interruptores serão de 10A - 250V e as tomadas serão de acordo com a NBR 14136 de 10A - 250V.

As fotocélulas serão 220V para lâmpadas de até 2000W.

8 - CAIXAS

8.1 - CAIXAS PARA TOMADAS E INTERRUPTORES

Serão de embutir nas paredes, retangulares 50 x

100 mm (4x2") PVC.

8.2 - CAIXAS DE PASSAGEM

Devem ser de embutir 100x50mm (4x2") retangulares de PVC e para eletrodutos de até 1". Na saída do quadro geral, utilizar caixas de passagem de embutir em parede de PVC para eletrodutos de 2".

8.3 - CAIXAS PARA PONTOS DE LUZ:

De embutir nas lajes, devem ser octogonais 100 x 100 mm (4x4") de PVC.

8.4 - CAIXAS DE PASSAGEM EM ALVENARIA

Serão de 40x40x50cm e construídas de tijolos maciços, revestidos internamente com argamassa de cimento e areia, dotadas de tampa de concreto e dreno em camada de brita n.1 no fundo.

9 - LUMINÁRIAS

9.1 - Luminária LED tubular 20W

Serão empregadas luminárias para lâmpadas LED tubulares T5 20W, IRC ≥80, 6500K, base G5, vida útil 24000h e diâmetro de 27x1213mm. Deverão ser de sobrepor, fixas nas lajes.

9.2 - Postes

9.2.1 – Poste de 4 pétalas metálico de 6 metros com 4 lâmpadas LED de 150W, 6500K e 15150lm.

9.2.2 – Poste metálico de 9 metros com 2 refletores holofote LED de 400W e 6500K cada.

Folha n.º: _____ Rubrica:

ESTADO DO RIO GRANDE DO SUL SOP/SSPSJSPS FORÇA-TAREFA

9.2.3 - Poste metálico de 4 metros com 1 refletor holofote LED 250W e 6500K.

10 - SERVIÇOS

Para execução deste projeto deverão sempre ser observadas as orientações contidas na NBR 5410:2004, NBR 5419:2005, RIC/CEEE ou normas técnicas da empresa concessionária local.

Para distribuição de pontos de luz e tomadas de força foram obedecidos o layout interno, nível luminotécnico previsto por norma, conforme o uso dos mesmos. Todos os circuitos, sem exceção, possuem condutor de proteção, fio terra.

Todos os serviços deverão ser executados com esmero e capricho, a fim de manter um bom nível de acabamento e garantir confiabilidade e segurança das instalações elétricas.

Solicito que após conclusão dos serviços sejam anexados a este processo os projetos executivos "as-built" para recebimento definitivo da obra.

Porto Alegre, 30 de setembro de 2022.

Arq. Eduardo Paim A. Berthier CAU/RS A58046-5 / ID. 3655059/1 FT – SSP/SJSPS/SOP

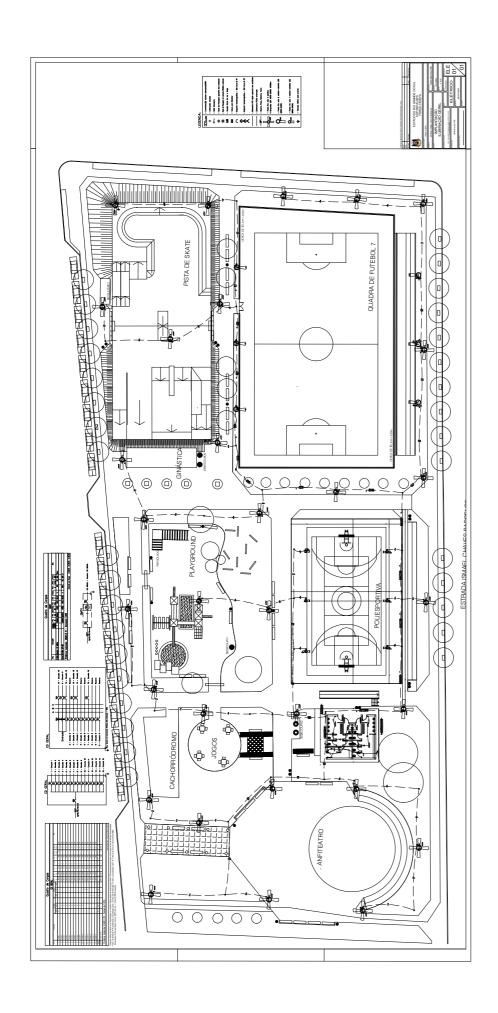
Nome do documento: 00-000000-00-0_ELE_ME_BT_R000.pdf

Documento assinado por

Órgão/Grupo/Matrícula

Data

Eduardo Paim de Andrade Berthier


SSP / FORCA-TAF / 36550591

04/10/2022 15:17:43

Folha n.º: _____ Rubrica: _____

ESTADO DO RIO GRANDE DO SUL SECRETARIA DE OBRAS PÚBLICAS DPPD-DPPS

MEMORIAL DESCRITIVO PROJETO ELÉTRICO - R001

31 BPM

PROCESSO: 19/1203-0021837-5

OBJETO: Secretaria da Segurança Pública **OBRA:** 31 Batalhão de Polícia Militar

MUNICÍPIO: Guaíba

1 - APRESENTAÇÃO

O presente memorial descritivo tem por finalidade dar uma orientação para a execução da instalação elétrica no 31º Batalhão de Polícia Militar no município de Guaíba, RS. O perfeito funcionamento das instalações ficará sob responsabilidade da firma licitante, estando a critério da Fiscalização, impugnar quaisquer serviços e materiais que não estiverem em conformidade com estes projetos.

Para execução destes serviços deverão sempre ser observadas as orientações contidas nas Normas Brasileiras (NBR) e recomendações da concessionária de energia local.

Deverão ser fornecidos Equipamentos de Proteção Individual (EPI) específicos para trabalhos em baixa tensão: roupas com tecido anti-chama, capacetes, luvas, botinas, óculos de proteção entre outros.

2 - ALIMENTAÇÃO

O suprimento de energia elétrica em Baixa Tensão, em 380/220V, será por circuito alimentador derivado da subestação a ser construída, conforme projeto específico. Será utilizado um grupo gerador, conforme projeto específico, para alimentar as cargas essenciais indicadas em projeto.

Os condutores serão em EPR, isolação 1000V, classe de encordoamento 5, singelos, com bitola, quantidade e especificação nas plantas baixas anexas. Deverão ser protegido através de um Eletroduto de PEAD, enterrado a 0,3/0,6 metros de profundidade e com caixas de inspeção em alvenaria no trajeto, com espaçamento máximo de 15 metros entre elas e também um eletroduto de PVC rígido aparente fixo na fachada externa da edificação.

3 - QUADROS DE DISTRIBUIÇÃO

Os Quadros de distribuição serão de Poliestireno, tipo embutir na parede, com porta em alumínio pintado, trinco, espelho, dispositivo de comando e proteção, monta-

Folha n.º: _____ Rubrica: _____

ESTADO DO RIO GRANDE DO SUL SECRETARIA DE OBRAS PÚBLICAS DPPD-DPPS

gem em trilhos, e barra de neutro e terra. Deverão ter porta etiquetas e espaço para abrigar os disjuntores previstos nas plantas baixas em anexo. Será padrão DIN com espaços para reserva, visando futuras ampliações.

Serão aterrados através de barra de aterramento instalada no mesmo e ligados à haste de aterramento (malha de aterramento do SPDA).

4 - PROTEÇÃO

A proteção de todos os circuitos terminais será feita por meio de disjuntores termomagnéticos em caixa moldada, com um disparador térmico (bimetal) para proteção contra sobrecargas e com um disparador eletromagnético para proteção contra curtoscircuitos, conforme NBR 5361. A capacidade de interrupção mínima deverá ser maior que 5 kA. Também sempre que indicada, deverá ser utilizada a proteção através de disjuntor tipo DR (diferencial residual), como proteção complementar, de acordo com ABNT NBR 5410/04 (correção 2008).

4.1- PROTEÇÃO GERAL

Os circuitos alimentadores serão protegidos por disjuntores no Quadro Geral de Baixa Tensão.

4.2- PROTEÇÃO DOS CIRCUITOS

Cada circuito terá proteção individual com disjuntor termomagnético conforme especificado nos quadros de cargas e diagramas unifilares nas plantas baixas em anexo.

4.3- ATERRAMENTO

Todos os aterramentos serão realizados através de hastes cobreadas alta camada diâmetro Ø16"x2400mm, enterrados verticalmente no solo. A resistência de aterramento não poderá ser superior a 10 Ohms em qualquer época do ano. Todas as carcaças de luminárias e reatores deverão ser ligadas com o fio terra.

4.4 - ATERRAMENTO DE PROTEÇÃO

Para proteção contra choques elétricos por contato indireto todos os circuitos serão dotados de condutor de proteção (terra).

O esquema utilizado será o TN-S (condutor neutro e condutor terra distintos, conforme NBR 5410:2004 (correção 2008), com o condutor neutro e o condutor de proteção, ambos em cor verde.

Todos os elementos metálicos no interior e exterior da edificação, bem como corrimãos metálicos, grades metálicas entre outros devem ser aterrados.

Todas as carcaças de luminárias e reatores deverão ser ligadas com o fio terra.

2

Folha n.º:	
Rubrica:	

ESTADO DO RIO GRANDE DO SUL SECRETARIA DE OBRAS PÚBLICAS DPPD-DPPS

4.5 - ATERRAMENTO DO NEUTRO

Será feito no novo QBGT, com condutor em bitola indicada no projeto e ligado à haste de aterramento. Deverá ser na cor verde.

4.6 - LIGAÇÃO EQUIPOTENCIAL

Todos os sistemas de aterramento deverão ser interligados pelo condutor de equipotencialidade: do aterramento individual, do aterramento dos pilares metálicos internos e externos ao barramento de terra do Quadro de Distribuição, por condutores de cobre com bitola igual ao condutor fase dos circuitos, protegido por eletroduto PVC rígido preto.

5 - CONDUTORES

Os condutores deverão ser do tipo ANTICHAMA e possuir gravadas em toda sua extensão as especificações de nome do fabricante, bitola, isolação, temperatura e certificado do INMETRO.

Também devem atender a NBR 13.248, quanto a não propagação de chama, livres de halogênio e com baixa emissão de fumaça e gases tóxicos.

Não serão permitidas emendas nos condutores alimentadores de circuitos, bem como emendas no interior dos eletrodutos.

Nas derivações os condutores deverão ter seu isolamento reconstituído com fita isolante de auto-fusão.

O padrão das cores dos condutores elétricos, conforme especificações da norma ABNT NBR 5410/08. A convenção de cores para as instalações deverá seguir o seguinte padrão:

- Azul (neutro), Branco (retorno), Preto/Vermelho (fases), Verde (terra).

A bitola mínima a ser utilizada será de #2,5 mm² para todos os circuitos.

Poderá ser empregado parafina ou talco industrial para auxiliar na enfiação dos condutores.

Os condutores só devem ser enfiados depois de completada a rede de eletrodutos. A enfiação só deve ser iniciada após a tubulação ser perfeitamente limpa e seca.

6 - ELETRODUTOS

6.1 – CORRUGADO FLEXÍVEL

Serão utilizados eletrodutos corrugados flexíveis. Devem ter diâmetro mínimo de 25 mm (3/4"), ou indicado em planta.

Folha n.º: _____ Rubrica: _____

ESTADO DO RIO GRANDE DO SUL SECRETARIA DE OBRAS PÚBLICAS DPPD-DPPS

Todos eletrodutos previstos serão instalados embutidos nas paredes.

6.2 - PVC RÍGIDO

Serão utilizados eletrodutos em PVC rígido na alimentação dos Quadros de Distribuição e na instalação aparente no teto, sob o telhado, fixos nas treliças através de abraçadeiras tipo D.

Devem ser roscáveis e de diâmetro mínimo de 25 mm (3/4"), ou indicado em planta.

6.3 - PEAD

Serão utilizados eletrodutos de Polietileno de Alta Densidade DN 2" com parede dupla, enterrados à 60 cm de profundidade no solo, na alimentação dos quadros de disjuntores dos blocos.

6.4 - FIXAÇÕES E CONEXÕES

As luvas de pressão deverão possuir as mesmas características dos eletrodutos.

<u>Utilizar conexões emendas de eletrodutos PVC rígido para eletrodutos corrugado</u>

<u>flexível nas descidas dos tetos/treliças/telhados para os pontos elétricos nas paredes.</u>

Os eletrodutos só devem ser cortados perpendicularmente ao seu eixo. Deve ser retirada toda a rebarba suscetível de danificar a isolação dos condutores.

ERRATA

Nas pranchas 03/09, 04/09, 05/09, 06/09, 07/09, 08/09, 09/09 onde lê-se na legenda "ELETRODUTO CORRUGADO FLEX EMBUTIDO EM LAJES E ALVENARIA", leia-se "ELETRODUTOS NOS TETOS EM PVC RÍGIDO APARENTE E NAS PAREDES CORRUGADO FLEXÍVEL EMBUTIDO."

7 - CAIXAS

7.1 – CAIXAS PARA TOMADAS E INTERRUPTORES

Serão de embutir nas paredes, retangulares 50 x 100 mm (4x2") de PVC.

7.2 - CAIXAS DE PASSAGEM

Devem ser de embutir nas alvenarias de PVC 100x100mm (4x4") para eletrodutos de até 1".

Quando enterradas no solo, para alimentação dos postes de iluminação externa, devem ser de PVC com grelha, porta tampa e adaptador universal em PVC, para eletrodutos PEAD 11/2".

Folha n.º:	
Rubrica:	

ESTADO DO RIO GRANDE DO SUL SECRETARIA DE OBRAS PÚBLICAS DPPD-DPPS

7.3 - CAIXAS PARA PONTOS DE LUZ:

De sobrepor, devem ser octogonais 100 x 100 mm (4x4") de PVC.

7.4 - CAIXAS DE PASSAGEM EM ALVENARIA

Serão de 60x60x60cm e construídas de tijolos maciços, revestidos internamente com argamassa de cimento e areia, dotadas de tampa de concreto e dreno em camada de brita n.1 no fundo.

8 - INTERRUPTORES E TOMADAS

Os interruptores serão de 10A - 250 V e as tomadas serão de acordo com a NBR 14136 de 10A - 250 V.

Os relés fotoelétricos dos postes de iluminação externa, devem ser de polipropileno com tensão de 220 V, 50/60 Hz, consumo durante o dia de 1,2 W e a noite de 0,05 W, contato desenergizado NF, filtro de tempo, tempo de retardo de 1 a 5 minutos para comutação de contatos, lux para ligar menor que 20, lux para desligar menor que 80, tensão de surto até 4000 V/2000A e IP 23.

9 - LUMINÁRIAS

9.1 - Spot com lâmpada LED 15 W / 6 W no teto ou parede

Serão empregadas luminárias tipo spot com lâmpadas LED 15 W, tipo bulbo, base E27, 5500K. Deverão ser de sobrepor, fixas nas lajes, forros ou paredes (tipo arandela).

9.2 - Refletor Holofote LED 100 W

Serão utilizados Refletores Holofote LED 100 W, 10000 lúmens, 6500K, IP66, com IRC ≥ 80, caixa de alumínio blindada com vidro temperado, utilizados para iluminacão dos muros laterais.

9.3 - Refletor Holofote LED 400 W

Serão utilizados Refletores Holofote LED 400 W, 40000 lúmens, 6500K, IP66, com IRC ≥ 80, caixa de alumínio blindada com vidro temperado, utilizados para iluminação da quadra de futebol 7 através de postes com 9 metros de altura.

9.4 - Luminária Pública LED 150 W

Serão utilizadas luminárias públicas em postes metálicos (com base e chumbadores) de 6 metros conforme projeto específico. As luminárias dever ter IRC ≥ 80, 6500K, 15150 lúmens e IP 65.

9.5 - Luminária LED tubular 20 W

Folha n.º: _____ Rubrica: _____

ESTADO DO RIO GRANDE DO SUL SECRETARIA DE OBRAS PÚBLICAS DPPD-DPPS

Serão empregadas luminárias para lâmpadas LED tubulares T5 20 W, IRC ≥80, fluxo luminoso de 2000lm, 6500K, base G5, vida útil 24000 h e diâmetro de 27x1213mm. Deverão ser de sobrepor, fixas nas lajes e forros.

9.6 - Bloco autônomo - Iluminação de emergência 30LEDS

Serão empregadas Luminárias de Emergência Autônomas de LED com acendimento automático. Devem possuir tensão de alimentação 100 a 240 VCA – 50/60 Hz. Consumo de energia 4 W. Tempo de recarga da bateria 18 horas. Autonomia de 3 a 6 horas. Fluxo luminoso 70/100 lumens. Bateria de 3,6 V x 1250 mA/h NiMH. Altura em relação ao piso de 230 cm, ou conforme indicado em projeto.

Deve seguir as orientações da NBR 10.898 da ABNT.

10 - CARGA INSTALADA E DEMANDA

Demanda calculada dos aparelhos e motores <u>de acordo com o RIC CEEE de bai-</u> <u>xa tensão</u>, conforme o ramo de atividade e o regime de funcionamento.

QGBT

Carga instalada: 279521.0W

Sendo:

Iluminação e tomadas: 45922.0W - conf. Anexo D do RICBT - 86%

a = 39492.92VA

Aparelhos de aquecimento: 15 unidades = 105000.00 W

b= 105000.0W x 40%

b= 42000.0VA

Aparelhos de ar-condicionado: 42 unidades = 70985.00 W

c = 70985.00 W x 90%

c= 63886.5 VA

QGBT - Essenciais - 86%

d= 53966.72VA

Carga Demandada: 199346.14VA

11 - SERVIÇOS

Para execução deste projeto deverão sempre ser observadas as orientações contidas na NBR 5410:2004, NBR 5419:2005, RIC/CEEE ou normas técnicas da empresa concessionária local.

6

Folha n.⁰:	
Rubrica:	

ESTADO DO RIO GRANDE DO SUL SECRETARIA DE OBRAS PÚBLICAS DPPD-DPPS

Para distribuição de pontos de luz e tomadas de força foram obedecidos aos layouts internos, nível luminotécnico previsto por norma, conforme o uso dos mesmos. Todos os circuitos, sem exceção, possuem condutor de proteção, fio terra.

Todos os serviços deverão ser executados com esmero e capricho, a fim de manter um bom nível de acabamento e garantir confiabilidade e segurança das instalações elétricas.

Solicito que após conclusão dos serviços sejam anexados a este processo os projetos executivos "as-built" para recebimento definitivo da obra.

Porto Alegre, 03/07/2023.

Arq. Eduardo Paim A. Berthier CAU/RS A58046-5 / ID. 3655059/1

