

PROJETO DAS INSTALAÇÕES ELÉTRICAS

PROCESSO: 024634-19.00/11-8

OBJETO: Projeto de instalações elétricas em baixa tensão para o Colégio Estadual Onofre Pires

LOCAL: Rua Bento Gonçalves, nº 841 MUNICÍPIO: Santo Ângelo RS

CRE: 14^a

RESP. TÉCNICO: Engo Civil André B. Corrêa

CREA RS: 117077 ART: 8481079 DATA: março de 2024

MEMORIAL DESCRITIVO

O presente memorial descritivo tem por finalidade a descrição dos serviços e materiais que serão empregados no projeto de instalações elétricas em baixa tensão para o Colégio Estadual Onofre Pires, no município de Santo Ângelo, localizada na Rua Bento Gonçalves, n° 841.

Todos os itens da planilha de orçamento deverão ser realizados de acordo com seus quantitativos e especificações:

GENERALIDADES:

Todos os serviços executados deverão satisfazer as exigências das Normas Técnicas atinentes. A execução dos trabalhos deverão obedecer aos critérios da boa técnica, critérios estes que prevalecerá em qualquer caso omisso, nas especificações e/ou projetos. Os materiais a empregar deverão ser de primeira qualidade, a mão de obra deverá ser especializada. A empresa executora deverá proceder Anotação de Responsabilidade Técnica junto ao CREA, assim como será responsável pelo fornecimento de equipamento de proteção ao trabalhador e pelo cumprimento de todas as exigências das Normas do Ministério do Trabalho relativo aos seus funcionários e todos os encargos referente a obra. A empreiteira será responsável pela recuperação de eventuais danos causados nos prédios existentes, em decorrência da execução da obra. Será, ainda, de responsabilidade da empreiteira a confecção e a fixação, em local determinado da placa da obra.

1. ADMINISTRAÇÃO DA OBRA

A obra será administrada por um profissional do executante (engenheiro eletricista)

devidamente inscrito no CREA o qual deverá estar presente em todas as fases importantes de execução dos serviços. O profissional deverá emitir uma ART (Anotação de responsabilidade técnica) de execução dos serviços.

2. INSTALAÇÃO DA OBRA

Caberá ao executante o fornecimento de todas as máquinas, ferramentas e equipamentos de segurança necessários e exigidos pela legislação vigente. Serão obedecidas todas as recomendações com relação a segurança do trabalho contidas nas normas reguladoras relativas ao assunto, como NR-6 Equipamentos de proteção individual e NR18 Condições e Meio Ambiente de Trabalho na Industria da Construção. Do fornecimento e uso de qualquer máquina ou ferramenta pelo executante, não advirá qualquer ônus para o Contratante.

3. INSTALAÇÕES ELÉTRICAS

3.1. CONSIDERAÇÕES GERAIS

A iluminação interna artificial do prédio foi projetada de forma a obter-se os níveis de iluminamento exigidos por norma para cada ambiente de trabalho. Devido a estes níveis optouse por um sistema de iluminação fluorescente ou a Led nos ambientes, pois teremos uma alta eficiência, boa reprodução de cores e um baixo consumo de energia.

A distribuição das luminárias observa sempre a obtenção de máxima difusão e o mínimo de ofuscamento.

O método de cálculo utilizado é o método dos lúmens, ou dos rendimentos e características de cada ambiente de trabalho, dimensões da sala, nível de iluminamento desejado.

3.2. NORMAS E DEFINIÇÕES

Para a execução dos serviços devem ser seguidas as normas abaixo, sendo obrigatórias as da ABNT:

- Execução de Instalações Elétricas de Baixa Tensão ABNT.- NBR 5410/2004,
- Iluminação de Interiores NBR 5413/1992,
- Reg. de Instalações Consumidoras para Fornecimento em Tensões Secundárias GED 13,

3.3. DESCRIÇÃO DOS SERVIÇOS NO SISTEMA DE ENERGIA

O sistema considerado em BT é de 380 / 220 V, 60 Hz

3.4 ENTRADA DE ENERGIA

A entrada de energia deverá ser em Média Tensão, com projeto especifico elaborado por Engenheiro Eletricista credenciado junto ao CREA. Foi elaborado todo o projeto em baixa Tensão para atender a escola Senador Pinheiro Machado a partir do QGBT.

3.5 ATERRAMENTO

Haverá um aterramento, descrito no memorial desta a ser instalado no Centro de Medição. A partir desta barra sairão os cabos de terra (proteção) para o QGBT, e a partir da barra de terra do QGBT sairão os condutores de proteção para todos os barramentos de terra (proteção) dos quadros elétricos do prédio e a partir destes aos circuitos, tendo-se assim um sistema TN-S.

3.6 QUADRO GERAL DE BAIXA TENSÃO E ALIMENTADORES

Será implantado um QGBT, alimentado a partir da rede elétrica da concessionária por 4 cabos unipolares # 95mm² - EPR/PVC 0,6/1,0kV, dispostos em eletrodutos, em ferro galvanizado quando aparentes e em PVC rígido quando embutidos.

Todos os alimentadores que partem do QGBT deverão ser identificados.

O QGBT terá as seguintes características:

Caracterização: de sobrepor, fabricado em chapa 16 USG, com acabamentos nas partes aparentes, pintado com tinta epóxi na cor RAL 7032.

Deverá possuir previsão de disjuntor geral, e local para protetor de surtos, ligado após o disjuntor geral.

Os equipamentos e componentes instalados no interior dos CDs deverão ser montados sobre bandejas removíveis.

O quadro terá espelho metálico, que visa evitar o contato do usuário com partes vivas da instalação, devendo ser articulado e dotado de fechadura com chave, para facilitar a manutenção.

Os barramentos serão de cobre eletrolítico de teor de pureza maior que 99%, pintados nas cores vermelha (fase A), amarela (fase B), violeta (fase C), azul claro(neutro) e verde(terra). Os barramentos, com capacidade compatível com disjuntor geral, deverão ser montados sobre isoladores de epóxi ou premix, fixados por parafusos e arruelas zincados, de forma a assegurarse perfeita isolação e resistência aos esforços eletrodinâmicos, em caso de curto-circuito de nível mínimo de 20 kA. As interligações entre barramentos serão dotadas de arruelas de pressão. Disjuntor: O disjuntor geral do QGBT deverá ser em caixa moldada, dotado de elemento térmico e magnético com capacidade de ruptura mínima de 12,5 kA / 380 VCA. Proteção Contra Surtos: Deverá ser instalado um protetor de surto de baixa tensão entre todas as fases e o neutro, tipo não curto-circuitantes (para-raios secundários tipo varistor), com capacidade máxima de 40kA (Corrente nominal de 15kA), onda de 8 x 20us.

Deverá ser apresentado externamente, dizeres com as seguintes informações: Plaqueta com as informações: "Perigo! Eletricidade!"; Plaqueta com a informação da tensão de trabalho: "380 V (3F+N)"

3.7 QUADROS DE DISTRIBUIÇÃO E FORÇA

3.7.1 Quadros de Distribuição e de Força

Toda a instalação de energia será subdividida em circuitos, que partirão dos disjuntores da entrada de Energia da escola, devendo todos serem identificados com etiquetas para uso profissional, adesivas em PVC, da seguinte forma: será instalada uma etiqueta ao lado de cada disjuntor identificando o circuito que este protege. Na parte interna da porta de cada quadro deverá ser instalada planilha, plastificada, contendo a finalidade de cada circuito, de acordo com os quadros de cargas.

Os quadros de energia serão de sobrepor, de acordo com as indicações do projeto e com as seguintes características:

Fabricados em chapa 16 USG, com acabamentos nas partes aparentes, pintado com tinta epóxi na cor RAL 7032.

Porta externa com fecho rápido e porta interna com dobradiças e fecho tipo fenda. Barramento para três fases tipo espinha de peixe, neutro e terra, para 150A, em cobre eletrolítico 99%, dimensionado com esforço nominal e curto-circuito.

Os disjuntores a serem instalados serão termomagnéticos para proteção de todos os circuitos terminais, tipo mini disjuntores, com capacidade de curto de 5kA/240V (disj. até 63A) e 10kA/240V (acima de 63A).

Deverão ainda conter porta etiquetas acrílicas autoadesivas para identificação dos CD's e circuitos com fitas adesivas de PVC.

Os quadros deverão possuir isolamento entre as cargas e as partes metálicas através de conectores isolantes, e seus barramentos deverão ter isolamento termo retrátil. Deverão ser apresentados externamente, dizeres com as seguintes informações: Plaqueta com as informações: "Perigo! Eletricidade!";

3.8. REDES DE DISTRIBUIÇÃO DE ENERGIA

3.8.1. Tubulações, Eletrocalhas e Caixas

Existirão os seguintes sistemas e instalações, a saber: eletrodutos aparentes na parede ou teto; eletrocalhas lisas com tampa na coluna montante, aparentes na parede ou teto.

As eletrocalhas serão em aço zincado perfurado, tendo altura de instalação indicada em planta, serão fixados à laje ou parede, através de suporte para eletrocalha e vergalhão com rosca total, a cada 1,5m.

Serão usados eletrodutos, curvas e luvas de PVC resistentes a chama ou similar. As curvas e luvas necessárias deverão ser do mesmo material dos eletrodutos em uso.

As tubulações aparentes deverão ser fixadas por meio de braçadeiras tipo "D", fecho em cunha ou elemento equivalente, às paredes e forros, sempre de maneira a não interferir na estética ou funcionalidade do local.

A conexão dos eletrodutos com as caixas e suportes adequados para as derivações, deverá ser feita com buchas e arruelas, com acabamento esmerado.

Deverá ser observada a continuidade elétrica do sistema de tubulação e caixas.

Todos os eletrodutos nas interligações entre as caixas ou nas baixadas para interruptores ou

tomadas não especificados em planta serão de bitola mínima de 3/4 polegada.

3.8.2. Condutores Elétricos dos Circuitos

Os condutores dos circuitos deverão ser, conforme NBR 13248, cabos flexíveis de baixa emissão de fumaça e livre de halogênio, que tragam gravados em relevo a marca de conformidade (NBR) com a norma que lhe for aplicável e isolação de 450/750V. Nas instalações subterrâneas e/ou alimentadores os condutores deverão ter uma tensão de isolamento de 0,6/1,0kV, em PVC.

Para o sistema de energia de iluminação e tomadas respectivamente, usar condutores com isolação mínima 450/750V, com o seguinte encordoamento:

classe 2: condutores encordoados, de # 1,5 mm² em diante.

classe 4: condutores encordoados, de # 2,5 mm² em diante.

Sempre obedecendo, rigorosamente, o código de cores a seguir:

fases.....cor vermelha/branco/amarelo.

neutros......cor azul claro retornos.....cor preta. proteção(terra)....cor verde.

Deverão apresentar, após a enfiação, perfeita integridade da isolação. Para facilitar a enfiação, poderá ser utilizado talco industrial apropriado as emendas necessárias deverão ser isoladas com fita auto fusão e plástica.

Todas as conexões dos condutores com barramentos, e disjuntores deverão ser feitas com terminais.

3.9. SISTEMA DE ILUMINAÇÃO

As alimentações das luminárias serão com fio de bitola mínima 2x1,5mm² (seguir projeto) com isolação PVC 450/750V derivados do circuito alimentador, a partir das caixas de saída octogonais, as luminárias devem ser aparentes com Lâmpadas Fluorescentes tubular ou de Led tubular 2X40W, conforme projeto e orçamento (está previsto a reutilização as luminárias doadas pela RGE e a substituição das lâmpadas existentes com defeito).

4. ESPECIFICAÇÃO DE MATERIAIS

PRODUTO: Eletrodutos de Ferro Galvanizado

Caracterização: Material resistente a chama conforme NBR 5410.

Aplicação: Proteção de cabos elétricos, rede lógica e de telecomunicações

PRODUTO: Eletrodutos de PVC Rígido

Caracterização: Material resistente a chama conforme NBR 5410 de PVC rígido, em barras de 3 metros, com curvas e luvas de raio longo (raio igual ou superior a dez vezes o seu diâmetro

interno)

Aplicação: Proteção de cabos elétricos, rede lógica e de telecomunicações

PRODUTO: Luvas e Curvas

Caracterização: Luvas e curvas no mesmo material da tubulação em que forem ser instaladas

Aplicação: Emendas de tubulações da rede elétrica

PRODUTO: Buchas, Arruelas e Boxes

Caracterização: acessórios para eletrodutos fabricados em liga metálica.

Aplicação: Terminações de eletrodutos metálicos ou flexíveis em caixas, calhas e suportes

diversos.

PRODUTO: Acessórios para fixação para dutos

Caracterização: tirantes, vergalhões, abraçadeiras (tipo cunha) e suspensões em ferro

galvanizado

Aplicação: fixação de eletrodutos, eletrocalhas em paredes e forros.

PRODUTO: Caixas de passagem Caracterização: Liga em aço ou PVC. Aplicação: Tubulações da rede elétrica

PRODUTO: Eletrocalha metálica lisa, em barras de 3m, galvanizada

Caracterização: Tipo perfurada, com tampa, em chapa de aço mínima MSG 22, galvanizada a

fogo, com dimensões indicadas em projeto.

Aplicação: proteção de cabos elétricos e cabeamento estruturado.

PRODUTO: Curva horizontal 90°, curva vertical interna 90°, curva vertical externa 90°," T" vertical de derivação, terminal de fechamento, junção dupla (emenda interna), saída horizontal para eletroduto e outros acessórios

Caracterização: compatíveis e com as mesmas características da eletrocalha selecionada

Aplicação: proteção de cabos elétricos

PRODUTO: Interruptores e Tomadas:

Caracterização: Os interruptores e as tomadas (2P+T e RJ-45), com espelhos modulares 2x4", (50x100mm), e teclas de acionamento modulares de forma a permitir acoplamentos conforme desejado.

Aplicação: Nas caixas 50x100mm para comando da iluminação, ponto de força

PRODUTO: Fita isolante

Caracterização: fita antichama convencional e auto fusão.

Aplicação: Isolamento de emendas de fios e cabos.

PRODUTO: Tomada 2P +T - 10 ou 20 A - 250 V

Caracterização: Tomada com dois pinos redondos mais terra, atendendo NBR 14136, com espelho na cor branca, em ABS alto brilho. As tomadas deverão ser instaladas com segui:

Tomadas de uso comum, 10 A: Tomadas de uso específico 20 A Tomadas de uso para informática, 10 A

Aplicação: Tomadas de energia para constituição de circuitos elétricos de baixa tensão.

PRODUTO: Caixa de alumínio para instalação aparente, para saída ou passagem

Caracterização: Tipo condulete

Aplicação: em caixas de saída ou passagem de instalações aparentes com eletrodutos metálicos.

PRODUTO: Caixa de PVC 2x4 para instalação aparente, para saída ou passagem

Caracterização: Tipo condulete de sobrepor

Aplicação: em caixas de saída ou passagem de instalações aparentes com eletrodutos de PVC.

PRODUTO: Cabos 450/750V, NBR-5410

Caracterização: Os cabos indicados para instalações em locais que seja necessário maior segurança para as pessoas, patrimônio e equipamentos devem atender a NBR 5410 com tensão de isolamento: 450/750V, Temperaturas máximas do condutor: 70°C em serviço contínuo, 100°C em sobrecarga e 160°C em curto-circuito.

Aplicação: Nos circuitos de distribuição.

PRODUTO: Disjuntor termomagnético unipolar, bipolar, tripolar

Caracterização: Disjuntor termomagnético, tipo mini disjuntor, fabricado em poliamida reforçada, com sistema de fixação através de garras (fixação bolt-on), com terminais protegidos com aperto elástico para cabos até 50mm2, ou barras até 12,7mm, identificação indelével da posição liga-desliga, corrente nominal e classificação de faixa de atuação do disparo magnéticotipo B ou C, segundo a IEC 898, com capacidade de curto de 5kA/240V (disj. até 63A) e 10kA/240V (acima de 63A), em 60Hz,

Aplicação: quadros de energia.

PRODUTO: Disjuntor termomagnético tripolar

Caracterização: Disjuntor termomagnético em caixa moldada, capacidade de interrupção de

18kA, 25kA (para 380VCA), em 60Hz, conforme indicação em planta.

Aplicação: Quadro de energia - QGBT

PRODUTO: Haste de Cobre

Caracterização: Ø16 x 2400 mm e Ø20 x 3000 mm, cobreada de alta camada.

Fabricantes que informam atender às especificações: Copperweld, BURNDY, Termotécnica

Aplicação: Sistema de aterramento.

5. RECOMENDAÇÕES PARA EXECUÇÃO

Deverão ser obedecidas as formas de instalações recomendadas pelos fabricantes dos materiais. E particularmente deverá ser observado o seguinte:

a) Quanto à montagem dos Quadros de Energia:

A distribuição dos componentes deve ser equilibrada, com os condutores seguindo um trajeto organizado, a fim de facilitar a sua manutenção. Todos os condutores devem ser identificados em sua origem junto aos barramentos, disjuntores e conectores com marcadores especiais, conforme convenção apropriada;

b) Quanto à instalação de caixas, conduletes e eletrodutos:

As tubulações se aparentes deverão ser fixadas por meio de braçadeiras tipo "D", fecho em cunha, às paredes, sempre de maneira a não interferir na estética ou funcionalidade do local;

As tubulações deverão manter perfeito alinhamento, perpendicularidade e distância constante entre si;

A conexão dos eletrodutos com as caixas deverá ser feita com buchas e arruelas, com acabamento esmerado:

A mudança de alinhamento dos dutos deverá ser feita preferencialmente nas caixas de passagem;

Será admitida a utilização de curvas, desde que no máximo duas, no mesmo plano e não reversas, em cada trecho entre duas caixas;

Deverá ser observada a continuidade elétrica do sistema de tubulação e caixas;

A fixação das caixas e conduletes deverá ser executada pelo fundo de modo que as tampas fiquem paralelas à superfície de fixação.

Os cruzamentos de tubulações deverão ser os estritamente necessários.

c) Quanto aos condutores elétricos:

Os cabos não deverão ser seccionados, exceto onde absolutamente necessário. Em cada circuito, os cabos deverão ser contínuos desde o disjuntor de proteção até a última carga, sendo que, nas cargas intermediárias, serão permitidas derivações. As derivações deverão ser emendadas e isoladas com fita auto fusão e após isolante plástica. As emendas só poderão ocorrer em caixas de passagem.

As terminações dos cabos flexíveis deverão receber terminais de pressão pré-isolados tipo anel, pino ou garfo. Os terminais deverão ser de tamanho compatível com a bitola dos cabos e serem perfeitamente prensados com alicate apropriado, não devendo os cabos ou terminais serem estanhados nem antes nem após a execução das conexões.

Junto aos circuitos de tomadas, todas as tampas deverão ser identificadas com anilhas de PVC contendo o nome do circuito indicado em planta. Além das identificações previstas nos cabos, prever plaquetas de acrílico ou outro material equivalente, para identificação de número do circuito em cada caixa de saída de tomada e no quadro de Energia.

d) Quanto ao acabamento:

O interior das caixas deve ser deixado perfeitamente limpo, sem restos de barramentos, parafusos ou qualquer outro material;

Col. Est. Onofre Pires- Projeto Elétrico BT-14CROP-Sto. Ângelo-RS

15

O padrão geral de qualidade da obra deve ser alto, devendo ser seguidas, além do aqui disposto, as recomendações das normas técnicas pertinentes, especialmente a NBR-5410 e NR-10.

Engl André Bueno Corrêa Id. Func. 3089630-2 CREA RS 117077-D 14ª CROP - Santo Ângelo

Eng^o Civil André Bueno Corrêa CREA: RS 117077-D